Unified Modeling Language User Guide, The

'THE UNIFIED MODELING Grady Booch
LANGUAGE James Rumbaugh
USER GUIDE Ivar Jacobson

GRADY BOGETT Publisher: Addison Wesley
MABAITE BEENIRAT First Edition October 20, 1998
LR EEES ISBN: 0-201-57168-4, 512 pages

The abimatr
imrariad re dhe
EAATE, from i

S

In The Unified Modeling Language User Guide, the original
developers of the UML--Grady Booch, James Rumbaugh, and Ivar
Jacobson--provide a tutorial to the core aspects of the language in a
two-color format designed to facilitate learning. Starting with a

| [ligede

Front Matter conceptual model of the UML, the book progressively applies the
Table of Contents UML to a series of increasingly complex modeling problems across
Index a variety of application domains. This example-driven approach

About the Author helps readers quickly understand and apply the UML. For more

advanced developers, the book includes a learning track focused on
applying the UML to advanced modeling problems.

With The Unified Modeling Language User Guide, readers will:

Understand what the UML is, what it is not, and why it is relevant to
the development of software-intensive systems

Master the vocabulary, rules, and idioms of the UML in order to
"speak” the language effectively

Learn how to apply the UML to a number of common modeling
problems

See illustrations of the UML'’s use interspersed with use cases for
specific UML features, and

Gain insight into the UML from the original creators of the UML.

Unified Modeling Lanquage User Guide, The

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Addision Wesley Longman
Inc. was aware of a trademark claim, the designations have been
printed in initial caps are all in caps.

The author and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs
contained herein.

The publisher offers discounts on this book when ordered in
guantity for special sales. For more information, please contact:

AWL Direct Sales

Addison Wesley Longman, Inc.
One Jacob Way

Reading, Massachusetts 01867
(781) 944-3700

Visit AW on the Web: http://www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Booch, Grady.

The unified modeling language user guide / Grady Booch, James
Rumbaugh, and lvar Jacobson.

p. cm. -- (Addison-Wesley object technology series)
Includes index.
ISBN 0-201-57168-4

1. Computer software--Development. 2. UML (Computer science) .
Rumbaugh, James. Il. Jacobson, Ivar. Ill. Title. IV. Series.

QA76.76.D47B655 1998.

005.1'7--dc21 98-30436

CIP

Copyright © 1999 by Addison-Wesley Longman Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously
in Canada.

Photo Credits: The illustrations on pages 1, 203, and 341 are from
A Visual Dictionary of Architecture, Francis Ching, © 1997 by Van
Nostrand Reinhold. Adapted by permission of John Wiley & Sons,
Inc. The illustrations on pages 45, 117, 275, and 429 are from
Architecture: Form, Space, and Order, Second Edition, Francis

Ching, © 1996 by Van Nostrand Reinhold. Adapted by permission
of John Wiley & Sons, Inc.

Text printed on recycled and acid-free paper.
67891011 MA 03020100
6th printing, April 2000
Credits
Executive Editor:
J. Carter Shanklin
Editorial Assistant:
Meg Tangirala
Copy Editor:
Arlene Richman
Cover Designer:
Simone R. Payment
Project Editor:
Krysia Bebick
Production Manager:
Sarah Weaver
Compositor:
Grady Booch

To my loving wife, Jan, and my goddaughter, Elyse, both of whom
make me whole.

Grady Booch
Unified Modeling Lanquage User Guide, The

Preface
Goals
Audience
How to Use This Book
Organization and Special Features
A Brief History of the UML
Acknowledgments
For More Information

I: Getting Started
I: Getting Started

1. Why We Model
The Importance of Modeling
Principles of Modeling
Object-Oriented Modeling

2. Introducing the UML
An Overview of the UML
A Conceptual Model of the UML
Architecture
Software Development Life Cycle

3. Hello, World!
Key Abstractions
Mechanisms

Components

11: Basic Structural Modeling
11: Basic Structural Modeling

4. Classes
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

5. Relationships
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

6. Common Mechanisms
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

7. Diagrams
Getting Started

Terms and Concepts
Common Modeling Technigues
Hints and Tips

8. Class Diagrams
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

111: Advanced Structural Modeling
111: Advanced Structural Modeling

9. Advanced Classes
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

10. Advanced Relationships
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

11. Interfaces, Types, and Roles
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

12. Packages
Getting Started

Terms and Concepts
Common Modeling Technigues
Hints and Tips

13. Instances
Getting Started
Terms and Concepts
Common Modeling Technigques
Hints and Tips

14. Object Diagrams
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

1V: Basic Behavioral Modeling
1V: Basic Behavioral Modeling

15. Interactions
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

16. Use Cases
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

17. Use Case Diagrams
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

18. Interaction Diagrams
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

19. Activity Diagrams
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

V: Advanced Behavioral Modeling
V: Advanced Behavioral Modeling

20. Events and Signals
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

21. State Machines
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

22. Processes and Threads
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

23. Time and Space
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

24. Statechart Diagrams
Getting Started
Terms and Concepts
Common Modeling Technique
Hints and Tips

VI: Architectural Modeling

VI: Architectural Modeling

25. Components
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

26. Deployment
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

27. Collaborations
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

28. Patterns and Frameworks
Getting Started
Terms and Concepts
Common Modeling Technigques
Hints and Tips

29. Component Diagrams
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

30. Deployment Diagrams
Getting Started
Terms and Concepts
Common Modeling Techniques
Hints and Tips

31. Systems and Models
Getting Started
Terms and Concepts
Common Modeling Techniqgues
Hints and Tips

VII: Wrapping Up
VII: Wrapping Up

32. Applying the UML
Transitioning to the U ML
Where to Go Next

A. UML Notation
Things

Relationships
Extensibility
Diagrams

B. UML Standard Elements
Stereotypes
Tagged Values
Constraints

C. Rational Unified Process
Characteristics of the Process
Phases and Iterations

Glossary
Glossary

Preface

The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system. The UML gives you a
standard way to write a system's blueprints, covering conceptual things, such as business
processes and system functions, as well as concrete things, such as classes written in a specific
programming language, database schemas, and reusable software components.

This book teaches you how to use the UML effectively.

Goals
In this book, you will

Learn what the UML is, what it is not, and why the UML is relevant to the process of
developing software-intensive systems

Master the vocabulary, rules, and idioms of the UML and, in general, learn how to
"speak" the language effectively

Understand how to apply the UML to solve a number of common modeling problems

The user guide provides a reference to the use of specific UML features. However, it is not
intended to be a comprehensive reference manual for the UML; that is the focus of another book,
The Unified Modeling Language Reference Manua | (Rumbaugh, Jacobson, Booch, Addison-
Wesley, 1999).

The user guide describes a development process for use with the UML. However, it is not
intended to provide a complete reference to that process; that is the focus of yet another book,
The Unified Software Development Process (Jacobson, Booch, Rumbaugh, Addison-Wesley,
1999).

Finally, this book provides hints and tips for using the UML to solve a number of common
modeling problems, but it does not teach you how to model. This is similar to a user guide for a
programming language that teaches you how to use the language but does not teach you how to
program.

Audience

The UML is applicable to anyone involved in the production, deployment, and maintenance of
software. The user guide is primarily directed to members of the development team who create
UML models. However, it is also suitable to those who read them, working together to
understand, build, test, and release a software-intensive system. Although this encompasses
almost every role in a software development organization, the user guide is especially relevant to
analysts and end users (who specify the required structure and behavior of a system), architects
(who design systems that satisfy those requirements), developers (who turn those architectures
into executable code), quality assurance personnel (who verify and validate the system's
structure and behavior), librarians (who create and catalogue components), and project and
program managers (who generally wrestle with chaos, provide leadership and direction, and
orchestrate the resources necessary to deliver a successful system).

The user guide assumes a basic knowledge of object-oriented concepts. Experience in an object-
oriented programming language or method is helpful but not required.

How to Use This Book

For the developer approaching the UML for the first time, the user guide is best read linearly. You
should pay particular attention to Chapter 2, which presents a conceptual model of the UML. All
chapters are structured so that each builds upon the content of the previous one, thus lending
itself to a linear progression.

For the experienced developer seeking answers to common modeling problems using the UML,

this book can be read in any order. You should pay particular attention to the common modeling
problems presented in each chapter.

Organization and Special Features
The user guide is organized into seven major sections:

Section 1 Getting Started

Section 2 Basic Structural Modeling

Section 3 Advanced Structural Modeling

Section 4 Basic Behavioral Modeling

Section 5 Advanced Behavioral Modeling

Section 6 Architectural Modeling

Section 7 Wrapping Up

The user guide contains three appendices: a summary of the UML notation, a list of standard
UML elements, and a summary of the Rational Unified Process. A glossary of common terms is
also provided.

Each chapter addresses the use of a specific UML feature, and most are organized into the
following four sections:

1. Getting Started
2. Terms and Concepts

3. Common Modeling Techniques

4. Hints and Tips
The third section introduces and then solves a set of common modeling problems. To make it
easy for you to browse the guide in search of these use cases for the UML, each problem is
identified by a distinct heading, as in the following example.

Modeling Architectural Patterns

Each chapter begins with a summary of the features it covers, as in the following example.

In this chapter

Active objects, processes, and threads
Modeling multiple flows of control
Modeling interprocess communication

Building thread-safe abstractions

Similarly, parenthetical comments and general guidance are set apart as notes, as in the
following example.

Note

You can specify more complex multiplicities by using a list, suchas 0. . 1, 3. .4,
6. . *, which would mean "any number of objects other than 2 or 5."

Components are discussed in Chapter 25.

The UML is semantically rich. Therefore, a presentation about one feature may naturally involve
another. In such cases, cross references are provided in the left margin, as on this page.

Blue highlights are used in figures to distinguish text that explains a model from text that is part of
the model itself. Code is distinguished by displaying it in a monospace font, asint hi s
exanpl e.

A Brief History of the UML

Object-oriented modeling languages appeared sometime between the mid 1970s and the late
1980s as methodologists, faced with a new genre of object-oriented programming languages and
increasingly complex applications, began to experiment with alternative approaches to analysis
and design. The number of object-oriented methods increased from fewer than 10 to more than
50 during the period between 1989 and 1994. Many users of these methods had trouble finding a
modeling language that met their needs completely, thus fueling the so-called method wars.
Learning from experience, new generations of these methods began to appear, with a few clearly
prominent methods emerging, most notably Booch, Jacobson's OOSE (Object-Oriented Software
Engineering), and Rumbaugh's OMT (Object Modeling Technique). Other important methods
included Fusion, Shlaer-Mellor, and Coad-Yourdon. Each of these was a complete method,
although each was recognized as having strengths and weaknesses. In simple terms, the Booch
method was particularly expressive during the design and construction phases of projects, OOSE
provided excellent support for use cases as a way to drive requirements capture, analysis, and

high-level design, and OMT-2 was most useful for analysis and data-intensive information
systems. The behavioral component of many object-oriented methods, including the Booch
method and OMT, was the language of statecharts, invented by David Harel. Prior to this object-
oriented adoption, statecharts were used mainly in the realm of functional decomposition and
structured analysis, and led to the development of executable models and tools that generated
full running code.

A critical mass of ideas started to form by the mid 1990s, when Grady Booch (Rational Software
Corporation), Ivar Jacobson (Objectory), and James Rumbaugh (General Electric) began to adopt
ideas from each other's methods, which collectively were becoming recognized as the leading
object-oriented methods worldwide. As the primary authors of the Booch, OOSE, and OMT
methods, we were motivated to create a unified modeling language for three reasons. First, our
methods were already evolving toward each other independently. It made sense to continue that
evolution together rather than apart, eliminating the potential for any unnecessary and gratuitous
differences that would further confuse users. Second, by unifying our methods, we could bring
some stability to the object-oriented marketplace, allowing projects to settle on one mature
modeling language and letting tool builders focus on delivering more useful features. Third, we
expected that our collaboration would yield improvements for all three earlier methods, helping us
to capture lessons learned and to address problems that none of our methods previously handled
well.

As we began our unification, we established three goals for our work:
1. To model systems, from concept to executable artifact, using object- oriented techniques
2. To address the issues of scale inherent in complex, mission-critical systems
3. To create a modeling language usable by both humans and machines

Devising a language for use in object-oriented analysis and design is not unlike designing a
programming language. First, we had to constrain the problem: Should the language encompass
requirements specification? Should the language be sufficient to permit visual programming?
Second, we had to strike a balance between expressiveness and simplicity. Too simple a
language would limit the breadth of problems that could be solved; too complex a language would
overwhelm the mortal developer. In the case of unifying existing methods, we also had to be
sensitive to the installed base. Make too many changes, and we would confuse existing users;
resist advancing the language, and we would miss the opportunity of engaging a much broader
set of users and of making the language simpler. The UML definition strives to make the best
trade-offs in each of these areas.

The UML effort started officially in October 1994, when Rumbaugh joined Booch at Rational. Our
project's initial focus was the unification of the Booch and OMT methods. The version 0.8 draft of
the Unified Method (as it was then called) was released in October 1995. Around the same time,
Jacobson joined Rational and the scope of the UML project was expanded to incorporate OOSE.
Our efforts resulted in the release of the UML version 0.9 documents in June 1996. Throughout
1996, we invited and received feedback from the general software engineering community.
During this time, it also became clear that many software organizations saw the UML as strategic
to their business. We established a UML consortium, with several organizations willing to
dedicate resources to work toward a strong and complete UML definition. Those partners
contributing to the UML 1.0 definition included Digital Equipment Corporation, HewlettPackard, I-
Logix, Intellicorp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle, Rational, Texas
Instruments, and Unisys. This collaboration resulted in the UML 1.0, a modeling language that
was well-defined, expressive, powerful, and applicable to a wide spectrum of problem domains.
UML 1.0 was offered for standardization to the Object Management Group (OMG) in January
1997, in response to their request for proposal for a standard modeling language.

Between January 1997 and July 1997, the original group of partners was expanded to include
virtually all of the other submitters and contributors of the original OMG response, including
Andersen Consulting, Ericsson, ObjecTime Limited, Platinum Technology, PTech, Reich
Technologies, Softeam, Sterling Software, and Taskon. A semantics task force was formed, led
by Cris Kobryn of MCI Systemhouse and administered by Ed Eykholt of Rational, to formalize the
UML specification and to integrate the UML with other standardization efforts. A revised version
of the UML (version 1.1) was offered to the OMG for standardization in July 1997. In September
1997, this version was accepted by the OMG Analysis and Design Task Force (ADTF) and the
OMG Architecture Board and then put up for vote by the entire OMG membership. UML 1.1 was
adopted by the OMG on November 14, 1997.

Maintenance of the UML was then taken over by the OMG Revision Task Force (RTF), led by

Cris Kobryn. The RTF released an editorial revision, UML 1.2, in June 1998. In fall 1998, the RTF
released UML 1.3, which this user guide describes, providing some technical cleanup.

Acknowledgments

Grady Booch, Ivar Jacobson, and James Rumbaugh began the UML effort and throughout the
project were its original designers, but the final product was a team effort among all the UML
partners. Although all partners came with their own perspectives, areas of concern, and areas of

interest, the overall result has benefited from the contributions of each of them and from the
diversity of their experience and viewpoints.

The core UML team included
Hewlett-Packard: Martin Griss
I-Logix: Eran Gery, David Harel
IBM: Steve Cook, Jos Warmer
ICON Computing: Desmond D'Souza
Intellicorp and James Martin and Company: James Odell
MCI Systemhouse: Cris Kobryn, Joaquin Miller
ObjecTime: John Hogg, Bran Selic
Oracle: Guus Ramackers
Platinum Technology: Dilhar DeSilva

Rational Software: Grady Booch, Ed Eykholt, Ivar Jacobson, Gunnar Overgaard, Karin
Palmkvist, James Rumbaugh

Taskon: Trygve Reenskaugh
Texas Instruments/Sterling Software: John Cheesman, Keith Short
Unisys: Sridhar lyengar, G.K. Khalsa

Cris Kobryn deserves a special acknowledgment for his leadership in directing the UML technical
team during the development of UML 1.1, 1.2, and 1.3.

We also acknowledge the contributions, influence, and support of the following individuals. In
some cases, individuals mentioned here have not formally endorsed the UML but are

nonetheless appreciated for their influence: Jim Amsden, Hernan Astudillo, Colin Atkinson, Dave
Bernstein, Philip Bernstein, Michael Blaha, Conrad Bock, Mike Bradley, Ray Buhr, Gary
Cernosek, James Cerrato, Michael Jesse Chonoles, Magnus Christerson, Dai Clegg, Geoff
Clemm, Peter Coad, Derek Coleman, Ward Cunningham, Raj Datta, Philippe Desfray, Mike
Devlin, Bruce Douglass, Staffan Ehnebom, Maria Ericsson, Johannes Ernst, Don Firesmith,
Martin Fowler, Adam Frankl, Eric Gamma, Dipayan Gangopadhyay, Garth Gullekson, Rick
Hargrove, Tim Harrison, Richard Helm, Brian Hendersen-Sellers, Michael Hirsch, Bob Hodges,
Yves Holvoet, Jon Hopkins, John Hsia, Glenn Hughes, Ralph Johnson, Anneke Kleppe, Philippe
Kruchten, Paul Kyzivat, Martin Lang, Grant Larsen, Reed Letsinger, Mary Loomis, Jeff MacKay,
Joe Marasco, Robert Martin, Terri McDaniel, Jim McGee, Mike Meier, Randy Messer, Bertrand
Meyer, Greg Meyers, Fred Mol, Luis Montero, Paul Moskowitz, Andy Maoss, Jan Pachl, Paul
Patrick, Woody Pidcock, Bill Premerlani, Jeff Price, Jerri Pries, Terry Quatrani, Mats Rahm,
Rudolf Riess, Rich Reitman, Erick Rivas, Kenny Rubin, Jim Rye, Danny Sabbahr, Tom Schultz,
Colin Scott, Ed Seidewitz, Keith Short, Gregson Sui, Jeff Sutherdand, Dan Tasker, Andy Trice,
Dave Tropeano, Dan Uhlar, John Vlissides, Larry Wall, Paul Ward, Alan Willis, Rebecca Wirfs-
Brock, Bryan Wood, Ed Yourdon, and Steve Zeigler.

The development of the UML was an open process, and via the OTUG (Object Technology
User's Group) we received thousands of e-mail messages from all over the world. Although we
cannot mention every submitter by name, we do thank all of them for their comments and
suggestions. We really did read each message, and the UML is better because of this broad
international feedback.

A special acknowledgment also goes to a small band of lab rats (Loud and Boisterous RATional
Students) who participated in a user guide course led by Booch in early 1997, during which they
offered excellent ideas and gave much constructive criticism that helped fine-tune the contents of
this book: Hernan Astudillo, Robin Brown, Robert Bundy, Magnus Christerson, Adam Frankl,
Nookiah Kolluru, Ron Krubek, Grant Larsen, Dean Leffingwell, Robert Martin, Mills Ripley, Hugo
Sanchez, Geri Schneider, Tom Schultz, Andy Trice, Dan Uhlar, and Lloyd Williams. Thanks go to
the madmen at Number Six Software and to the folks who provided a technical review of this
book: Jack Carter, Tim Budd, Bruce Douglass, Martin Fowler, Cris Kobryn, Philippe Kruchten,
Ron Lusk, Terry Quatrani, and David Rine.

For More Information

The most current information about the UML, including its formal specification, may be found on
the Internet at http://www.rational.com and http://www.omg.org. The work of the revision
task force may be found at uml.shl.com.

There are several electronic forums that are appropriate for general discussion about the UML,
including the Internet news groups comp.software-eng and comp.object and the public mailing
lists otug@rational.com and uml-rtf@omg.org.

Grady Booch
Lakewood, Colorado
September 1998

egb@rational.com

Part |: Getting Started

Chapter 1. Why We Model

In this chapter

The importance of modeling

Four principles of modeling

The essential blueprints of a software system

Object-oriented modeling
A successful software organization is one that consistently deploys quality software that meets
the needs of its users. An organization that can develop such software in a timely and predictable
fashion, with an efficient and effective use of resources, both human and material, is one that has

a sustainable business.

There's an important implication in this message: The primary product of a development team is
not beautiful documents, world-class meetings, great slogans, or Pulitzer prize—winning lines of

source code. Rather, it is good software that satisfies the evolving needs of its users and the
business. Everything else is secondary.

Unfortunately, many software organizations confuse "secondary" with "irrelevant.” To deploy
software that satisfies its intended purpose, you have to meet and engage users in a disciplined
fashion, to expose the real requirements of your system. To develop software of lasting quality,
you have to craft a solid architectural foundation that's resilient to change. To develop software
rapidly, efficiently, and effectively, with a minimum of software scrap and rework, you have to
have the right people, the right tools, and the right focus. To do all this consistently and
predictably, with an appreciation for the lifetime costs of the system, you must have a sound
development process that can adapt to the changing needs of your business and technology.

Modeling is a central part of all the activities that lead up to the deployment of good software. We
build models to communicate the desired structure and behavior of our system. We build models
to visualize and control the system's architecture. We build models to better understand the
system we are building, often exposing opportunities for simplification and reuse. We build
models to manage risk.

The Importance of Modeling

If you want to build a dog house, you can pretty much start with a pile of lumber, some nails, and
a few basic tools, such as a hammer, saw, and tape measure. In a few hours, with little prior
planning, you'll likely end up with a dog house that's reasonably functional, and you can probably
do it with no one else's help. As long as it's big enough and doesn't leak too much, your dog will
be happy. If it doesn't work out, you can always start over, or get a less demanding dog.

If you want to build a house for your family, you can start with a pile of lumber, some nails, and a
few basic tools, but it's going to take you a lot longer, and your family will certainly be more
demanding than the dog. In this case, unless you've already done it a few dozen times before,
you'll be better served by doing some detailed planning before you pound the first nail or lay the
foundation. At the very least, you'll want to make some sketches of how you want the house to
look. If you want to build a quality house that meets the needs of your family and of local building
codes, you'll need to draw some blueprints as well, so that you can think through the intended
use of the rooms and the practical details of lighting, heating, and plumbing. Given these plans,
you can start to make reasonable estimates of the amount of time and materials this job will
require. Although it is humanly possible to build a house yourself, you'll find it is much more
efficient to work with others, possibly subcontracting out many key work products or buying pre-
built materials. As long as you stay true to your plans and stay within the limitations of time and
money, your family will most likely be satisfied. If it doesn't work out, you can't exactly get a new
family, so it is best to set expectations early and manage change carefully.

If you want to build a high-rise office building, it would be infinitely stupid for you to start with a
pile of lumber, some nails, and a few basic tools. Because you are probably using other people's
money, they will demand to have input into the size, shape, and style of the building. Often, they
will change their minds, even after you've started building. You will want to do extensive planning,
because the cost of failure is high. You will be just a part of a much larger group responsible for
developing and deploying the building, and so the team will need all sorts of blueprints and
models to communicate with one another. As long as you get the right people and the right tools
and actively manage the process of transforming an architectural concept into reality, you will
likely end up with a building that will satisfy its tenants. If you want to keep building buildings, then
you will want to be certain to balance the desires of your tenants with the realities of building
technology, and you will want to treat the rest of your team professionally, never placing them at
any risk or driving them so hard that they burn out.

Curiously, a lot of software development organizations start out wanting to build high rises but
approach the problem as if they were knocking out a dog house.

Sometimes, you get lucky. If you have the right people at the right moment and if all the planets
align properly, then you might, just might, get your team to push out a software product that
dazzles its users. Typically, however, you can't get all the right people (the right ones are often
already overcommitted), it's never the right moment (yesterday would have been better), and the
planets never seem to align (instead, they keep moving out of your control). Given the increasing
demand to develop software in Internet time, development teams often fall back on the onlything
they really know how to do well—pound out lines of code. Heroic programming efforts are legend
in this industry, and it often seems that working harder is the proper reaction to any crisis in
development. However, these are not necessarily the right lines of code, and some projects are
of such a magnitude that even adding more hours to the work day is not enough to get the job
done.

If you really want to build the software equivalent of a house or a high rise, the problem is more
than just a matter of writing lots of software—in fact, the trick is in creating the right software and
in figuring out how to write less software. This makes quality software development an issue of
architecture and process and tools. Even so, many projects start out looking like dog houses but
grow to the magnitude of a high rise simply because they are a victim of their own success. There
comes a time when, if there was no consideration given to architecture, process, or tools, that the
dog house, now grown into a high rise, collapses of its own weight. The collapse of a dog house
may annoy your dog; the failure of a high rise will materially affect its tenants.

Unsuccessful software projects fail in their own unique ways, but all successful projects are alike
in many ways. There are many elements that contribute to a successful software organization;
one common thread is the use of modeling.

Modeling is a proven and well-accepted engineering technique. We build architectural models of
houses and high rises to help their users visualize the final product. We may even build
mathematical models in order to analyze the effects of winds or earthquakes on our buildings.

Modeling is not just a part of the building industry. It would be inconceivable to deploy a new
aircraft or an automobile without first building models—from computer models to physical wind
tunnel models to full-scale prototypes. New electrical devices, from microprocessors to telephone
switching systems require some degree of modeling in order to better understand the system and
to communicate those ideas to others. In the motion picture industry, storyboarding, which is a
form of modeling, is central to any production. In the fields of sociology, economics, and business
management, we build models so that we can validate our theories or try out new ones with
minimal risk and cost.

What, then, is a model? Simply put,
A model is a simplification of reality.

A model provides the blueprints of a system. Models may encompass detailed plans, as well as
more general plans that give a 30,000-foot view of the system under consideration. A good model
includes those elements that have broad effect and omits those minor elements that are not
relevant to the given level of abstraction. Every system may be described from different aspects
using different models, and each model is therefore a semantically closed abstraction of the
system. A model may be structural, emphasizing the organization of the system, or it may be
behavioral, emphasizing the dynamics of the system.

Why do we model? There is one fundamental reason.

We build models so that we can better understand the system we are
developing.

Through modeling, we achieve four aims.

How the UML addresses these four things is discussed in Chapter 2.
1. Models help us to visualize a system as it is or as we want it to be.
2. Models permit us to specify the structure or behavior of a system.
3. Models give us a template that guides us in constructing a system.
4. Models document the decisions we have made.

Modeling is not just for big systems. Even the software equivalent of a dog house can benefit
from some modeling. However, it's definitely true that the larger and more complex the system,
the more important modeling becomes, for one very simple reason:

We build models of complex systems because we cannot comprehend such a
system in its entirety.

There are limits to the human ability to understand complexity. Through modeling, we narrow the
problem we are studying by focusing on only one aspect at a time. This is essentially the
approach of "divide-and-conquer"” that Edsger Dijkstra spoke of years ago: Attack a hard problem
by dividing it into a series of smaller problems that you can solve. Furthermore, through modeling,
we amplify the human intellect. A model properly chosen can enable the modeler to work at
higher levels of abstraction.

Saying that one ought to model does not necessarily make it so. In fact, a number of studies
suggest that most software organizations do little if any formal modeling. Plot the use of modeling
against the complexity of a project, and you'll find that the simpler the project, the less likely it is
that formal modeling will be used.

The operative word here is "formal." In reality, in even the simplest project, developers do some
amount of modeling, albeit very informally. A developer might sketch out an idea on a blackboard
or a scrap of paper in order to visualize a part of a system, or the team might use CRC cards to
work through a scenario or the design of a mechanism. There's nothing wrong with any of these
models. If it works, by all means use it. However, these informal models are often ad hoc and do
not provide a common language that can easily be shared with others. Just as there exists a
common language of blueprints for the construction industry, a common language for electrical
engineering, and a common language for mathematical modeling, so too can a development
organization benefit by using a common language for software modeling.

Every project can benefit from some modeling. Even in the realm of disposable software, where
it's sometimes more effective to throw away inadequate software because of the productivity
offered by visual programming languages, modeling can help the development team better
visualize the plan of their system and allow them to develop more rapidly by helping them build
the right thing. The more complex your project, the more likely it is that you will fail or that you will
build the wrong thing if you do no modeling at all. All interesting and useful systems have a
natural tendency to become more complex over time. So, although you might think you don't
need to model today, as your system evolves you will regret that decision, after it is too late.

Principles of Modeling

The use of modeling has a rich history in all the engineering disciplines. That experience
suggests four basic principles of modeling. First,

The choice of what models to create has a profound influence on how a problem
is attacked and how a solution is shaped.

In other words, choose your models well. The right models will brilliantly illuminate the most
wicked development problems, offering insight that you simply could not gain otherwise; the
wrong models will mislead you, causing you to focus on irrelevant issues.

Setting aside software for a moment, suppose you are trying to tackle a problem in quantum
physics. Certain problems, such as the interaction of photons in time-space, are full of
wonderfully hairy mathematics. Choose a different model than the calculus, and all of a sudden
this inherent complexity becomes tractable. In this field, this is precisely the value of Feynmann
diagrams, which provide a graphical rendering of a very complex problem. Similarly, in a totally
different domain, suppose you are constructing a new building and you are concerned about how
it might behave in high winds. If you build a physical model and then subject it to wind tunnel
tests, you might learn some interesting things, although materials in the small don't flex exactly as
they do in the large. Hence, if you build a mathematical model and then subject it to simulations,
you will learn some different things, and you will also probably be able to play with more new
scenarios than if you were using a physical model. By rigorously and continuously testing your
models, you'll end up with a far higher level of confidence that the system you have modeled will,
in fact, behave as you expect it to in the real world.

In software, the models you choose can greatly affect your world view. If you build a system
through the eyes of a database developer, you will likely focus on entity-relationship models that
push behavior into triggers and stored procedures. If you build a system through the eyes of a
structured analyst, you will likely end up with models that are algorithmic-centric, with data flowing
from process to process. If you build a system through the eyes of an object-oriented developer,
you'll end up with a system whose architecture is centered around a sea of classes and the
patterns of interaction that direct how those classes work together. Any of these approaches
might be right for a given application and development culture, although experience suggests that
the object-oriented view is superior in crafting resilient architectures, even for systems that might
have a large database or computational element. That fact notwithstanding, the point is that each
world view leads to a different kind of system, with different costs and benefits.

Second,
Every model may be expressed at different levels of precision.

If you are building a high rise, sometimes you need a 30,000-foot view—for instance, to help your
investors visualize its look and feel. Other times, you need to get down to the level of the studs—
for instance, when there's a tricky pipe run or an unusual structural element.

The same is true with software models. Sometimes, a quick and simple executable model of the
user interface is exactly what you need; at other times, you have to get down and dirty with the
bits, such as when you are specifying cross-system interfaces or wrestling with networking
bottlenecks. In any case, the best kinds of models are those that let you choose your degree of
detail, depending on who is doing the viewing and why they need to view it. An analyst or an end
user will want to focus on issues of what; a developer will want to focus on issues of how. Both of
these stakeholders will want to visualize a system at different levels of detail at different times.

Third,
The best models are connected to reality.

A physical model of a building that doesn't respond in the same way as do real materials has only
limited value; a mathematical model of an aircraft that assumes only ideal conditions and perfect
manufacturing can mask some potentially fatal characteristics of the real aircraft. It's best to have
models that have a clear connection to reality, and where that connection is weak, to know
exactly how those models are divorced from the real world. All models simplify reality; the trick is
to be sure that your simplifications don't mask any important details.

In software, the Achilles heel of structured analysis techniques is the fact that there is a basic
disconnect between its analysis model and the system's design model. Failing to bridge this
chasm causes the system as conceived and the system as built to diverge over time. In object-
oriented systems, it is possible to connect all the nearly independent views of a system into one
semantic whole.

Fourth,

No single model is sufficient. Every nontrivial system is best approached through
a small set of nearly independent models.

If you are constructing a building, there is no single set of blueprints that reveal all its details. At
the very least, you'll need floor plans, elevations, electrical plans, heating plans, and plumbing
plans.

The operative phrase here is "nearly independent.” In this context, it means having models that
can be built and studied separately but that are still interrelated. As in the case of a building, you
can study electrical plans in isolation, but you can also see their mapping to the floor plan and
perhaps even their interaction with the routing of pipes in the plumbing plan.

The five views of an architecture are discussed in Chapter 2.

The same is true of object-oriented software systems. To understand the architecture of such a
system, you need several complementary and interlocking views: a use case view (exposing the
requirements of the system), a design view (capturing the vocabulary of the problem space and
the solution space), a process view (modeling the distribution of the system's processes and
threads), an implementation view (addressing the physical realization of the system), and a
deployment view (focusing on system engineering issues). Each of these views may have
structural, as well as behavioral, aspects. Together, these views represent the blueprints of
software.

Depending on the nature of the system, some models may be more important than others. For
example, in data-intensive systems, models addressing static design views will dominate. In GUI-
intensive systems, static and dynamic use case views are quite important. In hard real time
systems, dynamic process views tend to be more important. Finally, in distributed systems, such
as one finds in Web-intensive applications, implementation and deployment models are the most
important.

Object-Oriented Modeling

Civil engineers build many kinds of models. Most commonly, there are structural models that help
people visualize and specify parts of systems and the way those parts relate to one another.
Depending on the most important business or engineering concerns, engineers might also build
dynamic models— for instance, to help them to study the behavior of a structure in the presence
of an earthquake. Each kind of model is organized differently, and each has its own focus.

In software, there are several ways to approach a model. The two most common ways are from
an algorithmic perspective and from an object-oriented perspective.

The traditional view of software development takes an algorithmic perspective. In this approach,
the main building block of all software is the procedure or function. This view leads developers to
focus on issues of control and the decomposition of larger algorithms into smaller ones. There's
nothing inherently evil about such a point of view except that it tends to yield brittle systems. As
requirements change (and they will) and the system grows (and it will), systems built with an
algorithmic focus turn out to be very hard to maintain.

The contemporary view of software development takes an object-oriented perspective. In this
approach, the main building block of all software systems is the object or class. Simply put, an
object is a thing, generally drawn from the vocabulary of the problem space or the solution space;
a class is a description of a set of common objects. Every object has identity (you can name it or
otherwise distinguish it from other objects), state (there's generally some data associated with it),
and behavior (you can do things to the object, and it can do things to other objects, as well).

For example, consider a simple three-tier architecture for a billing system, involving a user
interface, middleware, and a database. In the user interface, you will find concrete objects, such
as buttons, menus, and dialog boxes. In the database, you will find concrete objects, such as
tables representing entities from the problem domain, including customers, products, and orders.
In the middle layer, you will find objects such as transactions and business rules, as well as
higher-level views of problem entities, such as customers, products, and orders.

The object-oriented approach to software development is decidedly a part of the mainstream
simply because it has proven to be of value in building systems in all sorts of problem domains
and encompassing all degrees of size and complexity. Furthermore, most contemporary
languages, operating systems, and tools are object-oriented in some fashion, giving greater
cause to view the world in terms of objects. Object-oriented development provides the conceptual
foundation for assembling systems out of components using technology such as Java Beans or
COM+.

These questions are discussed in Chapter 2.

A number of consequences flow from the choice of viewing the world in an object-oriented
fashion: What's the structure of a good object-oriented architecture? What artifacts should the
project create? Who should create them? How should they be measured?

Visualizing, specifying, constructing, and documenting object-oriented systems is exactly the
purpose of the Unified Modeling Language.

Chapter 2. Introducing the UML

In this chapter
Overview of the UML
Three steps to understanding the UML
Software architecture
The software development process

The Unified Modeling Language (UML) is a standard language for writing software blueprints. The
UML may be used to visualize, specify, construct, and document the artifacts of a software-
intensive system.

The UML is appropriate for modeling systems ranging from enterprise information systems to
distributed Web-based applications and even to hard real time embedded systems. It is a very
expressive language, addressing all the views needed to develop and then deploy such systems.
Even though it is expressive, the UML is not difficult to understand and to use. Learning to apply
the UML effectively starts with forming a conceptual model of the language, which requires
learning three major elements: the UML's basic building blocks, the rules that dictate how these
building blocks may be put together, and some common mechanisms that apply throughout the
language.

The UML is only a language and so is just one part of a software development method. The UML
is process independent, although optimally it should be used in a process that is use case driven,
architecture-centric, iterative, and incremental.

An Overview of the UML

The UML is a language for
Visualizing
Specifying
Constructing
Documenting

the artifacts of a software-intensive system.
The UML Is a Language

A language provides a vocabulary and the rules for combining words in that vocabulary for the
purpose of communication. A modeling language is a language whose vocabulary and rules
focus on the conceptual and physical representation of a system. A modeling language such as
the UML is thus a standard language for software blueprints.

The basic principles of modeling are discussed in Chapter 1.

Modeling yields an understanding of a system. No one model is ever sufficient. Rather, you often
need multiple models that are connected to one another in order to understand anything but the
most trivial system. For software- intensive systems, this requires a language that addresses the
different views of a system's architecture as it evolves throughout the software development life
cycle.

The vocabulary and rules of a language such as the UML tell you how to create and read well
formed models, but they don't tell you what models you should create and when you should
create them. That's the role of the software development process. A well-defined process will
guide you in deciding what artifacts to produce, what activities and what workers to use to create
them and manage them, and how to use those artifacts to measure and control the project as a
whole.

The UML Is a Language for Visualizing

For many programmers, the distance between thinking of an implementation and then pounding it
out in code is close to zero. You think it, you code it. In fact, some things are best cast directly in
code. Text is a wonderfully minimal and direct way to write expressions and algorithms.

In such cases, the programmer is still doing some modeling, albeit entirely mentally. He or she
may even sketch out a few ideas on a white board or on a napkin. However, there are several
problems with this. First, communicating those conceptual models to others is error-prone unless
everyone involved speaks the same language. Typically, projects and organizations develop their
own language, and it is difficult to understand what's going on if you are an outsider or new to the
group. Second, there are some things about a software system you can't understand unless you
build models that transcend the textual programming language. For example, the meaning of a
class hierarchy can be inferred, but not directly grasped, by staring at the code for all the classes
in the hierarchy. Similarly, the physical distribution and possible migration of the objects in a Web-
based system can be inferred, but not directly grasped, by studying the system's code. Third, if
the developer who cut the code never wrote down the models that are in his or her head, that

information would be lost forever or, at best, only partially recreatable from the implementation,
once that developer moved on.

Writing models in the UML addresses the third issue: An explicit model facilitates communication.

Some things are best modeled textually; others are best modeled graphically. Indeed, in all
interesting systems, there are structures that transcend what can be represented in a
programming language. The UML is such a graphical language. This addresses the second
problem described earlier.

The complete semantics of the UML are discussed in The Unified Modeling Language Reference
Manual.

The UML is more than just a bunch of graphical symbols. Rather, behind each symbol in the UML
notation is a well-defined semantics. In this manner, one developer can write a model in the UML,
and another developer, or even another tool, can interpret that model unambiguously. This
addresses the first issue described earlier.

The UML Is a Language for Specifying

In this context, specifying means building models that are precise, unambiguous, and complete.
In particular, the UML addresses the specification of all the important analysis, design, and
implementation decisions that must be made in developing and deploying a software-intensive
system.

The UML Is a Language for Constructing

The UML is not a visual programming language, but its models can be directly connected to a
variety of programming languages. This means that it is possible to map from a model in the UML
to a programming language such as Java, C++, or Visual Basic, or even to tables in a relational
database or the persistent store of an object-oriented database. Things that are best expressed
graphically are done so graphically in the UML, whereas things that are best expressed textually
are done so in the programming language.

Modeling the structure of a system is discussed in Sections 2 and 3.

This mapping permits forward engineering: The generation of code from a UML model into a
programming language. The reverse is also possible: You can reconstruct a model from an
implementation back into the UML. Reverse engineering is not magic. Unless you encode that
information in the implementation, information is lost when moving forward from models to code.
Reverse engineering thus requires tool support with human intervention. Combining these two
paths of forward code generation and reverse engineering yields round-trip engineering, meaning
the ability to work in either a graphical or a textual view, while tools keep the two views
consistent.

Modeling the behavior of a system is discussed in Sections 4 and 5.

In addition to this direct mapping, the UML is sufficiently expressive and unambiguous to permit
the direct execution of models, the simulation of systems, and the instrumentation of running
systems.

The UML Is a Language for Documenting

A healthy software organization produces all sorts of artifacts in addition to raw executable code.
These artifacts include (but are not limited to)

Requirements

Architecture

Design

Source code

Project plans

Tests

Prototypes

Releases
Depending on the development culture, some of these artifacts are treated more or less formally
than others. Such artifacts are not only the deliverables of a project, they are also critical in
controlling, measuring, and communicating about a system during its development and after its
deployment.
The UML addresses the documentation of a system's architecture and all of its details. The UML
also provides a language for expressing requirements and for tests. Finally, the UML provides a
language for modeling the activities of project planning and release management.

Where Can the UML Be Used?

The UML is intended primarily for software-intensive systems. It has been used effectively for
such domains as

Enterprise information systems
Banking and financial services
Telecommunications
Transportation
Defense/aerospace
Retall
Medical electronics
Scientific
Distributed Web-based services
The UML is not limited to modeling software. In fact, it is expressive enough to model

nonsoftware systems, such as workflow in the legal system, the structure and behavior of a
patient healthcare system, and the design of hardware.

A Conceptual Model of the UML

To understand the UML, you need to form a conceptual model of the language, and this requires
learning three major elements: the UML's basic building blocks, the rules that dictate how those
building blocks may be put together, and some common mechanisms that apply throughout the
UML. Once you have grasped these ideas, you will be able to read UML models and create some

basic ones. As you gain more experience in applying the UML, you can build on this conceptual
model, using more advanced features of the language.

Building Blocks of the UML

The vocabulary of the UML encompasses three kinds of building blocks:
1. Things
2. Relationships
3. Diagrams

Things are the abstractions that are first-class citizens in a model; relationships tie these things
together; diagrams group interesting collections of things.

Things in the UML
There are four kinds of things in the UML.:
1. Structural things
2. Behavioral things
3. Grouping things
4. Annotational things

These things are the basic object-oriented building blocks of the UML. You use them to write well-
formed models.

Structural Things

Structural things are the nouns of UML models. These are the mostly static parts of a model,
representing elements that are either conceptual or physical. In all, there are seven kinds of
structural things.

Classes are discussed in Chapters 4and 9.

First, a class is a description of a set of objects that share the same attributes, operations,
relationships, and semantics. A class implements one or more interfaces. Graphically, a class is
rendered as a rectangle, usually including its name, attributes, and operations, as in Figure 2-1.

Figure 2-1 Classes

Window

origin
size

open()
close()
move()

display()

Interfaces are discussed in Chapter 11.

Second, an interface is a collection of operations that specify a service of a class or component.
An interface therefore describes the externally visible behavior of that element. An interface might
represent the complete behavior of a class or component or only a part of that behavior. An
interface defines a set of operation specifications (that is, their signatures) but never a set of
operation implementations. Graphically, an interface is rendered as a circle together with its
name. An interface rarely stands alone. Rather, it is typically attached to the class or component
that realizes the interface, as in Figure 2-2.

Figure 2-2 Interfaces

ISpelling
Collaborations are discussed in Chapter 27.

Third, a collaboration defines an interaction and is a society of roles and other elements that work
together to provide some cooperative behavior that's bigger than the sum of all the elements.
Therefore, collaborations have structural, as well as behavioral, dimensions. A given class might
participate in several collaborations. These collaborations therefore represent the implementation
of patterns that make up a system. Graphically, a collaboration is rendered as an ellipse with
dashed lines, usually including only its name, as in Figure 2-3.

Figure 2-3 Collaborations

4 Chain of \
\ responsibility i

— -

Use cases are discussed in Chapter 16.

Fourth, a use case is a description of set of sequence of actions that a system performs that
yields an observable result of value to a particular actor. A use case is used to structure the
behavioral things in a model. A use case is realized by a collaboration. Graphically, a use case is
rendered as an ellipse with solid lines, usually including only its name, as in Figure 2-4.

Figure 2-4 Use Cases

Place order

The remaining three things—active classes, components, and nodes—are all class-like, meaning
they also describe a set of objects that share the same attributes, operations, relationships, and
semantics. However, these three are different enough and are necessary for modeling certain
aspects of an object-oriented system, and so they warrant special treatment.

Active classes are discussed in Chapter 22.

Fifth, an active class is a class whose objects own one or more processes or threads and
therefore can initiate control activity. An active class is just like a class except that its objects
represent elements whose behavior is concurrent with other elements. Graphically, an active
class is rendered just like a class, but with heavy lines, usually including its name, attributes, and
operations, as in Figure 2-5.

Figure 2-5 Active Classes

EventManager

suspend()
flush()

The remaining two elements—component, and nodes—are also different. They represent
physical things, whereas the previous five things represent conceptual or logical things.

Components are discussed in Chapter 25.

Sixth, a component is a physical and replaceable part of a system that conforms to and provides
the realization of a set of interfaces. In a system, you'll encounter different kinds of deployment
components, such as COM+ components or Java Beans, as well as components that are artifacts
of the development process, such as source code files. A component typically represents the
physical packaging of otherwise logical elements, such as classes, interfaces, and collaborations.
Graphically, a component is rendered as a rectangle with tabs, usually including only its name, as

in Figure 2-6.

Figure 2-6 Components

orderform.java

Nodes are discussed in Chapter 26.

Seventh, a node is a physical element that exists at run time and represents a computational
resource, generally having at least some memory and, often, processing capability. A set of
components may reside on a node and may also migrate from node to node. Graphically, a node
is rendered as a cube, usually including only its name, as in Figure 2-7.

Figure 2-7 Nodes

Server

These seven elements—classes, interfaces, collaborations, use cases, active classes,
components, and nodes—are the basic structural things that you may include in a UML model.
There are also variations on these seven, such as actors, signals, and utilities (kinds of classes),
processes and threads (kinds of active classes), and applications, documents, files, libraries,
pages, and tables (kinds of components).

Use cases, which are used to structure the behavioral things in a model, are discussed in
Chapter 16; Interactions are discussed in Chapter 15.

Behavioral Things

Behavioral things are the dynamic parts of UML models. These are the verbs of a model,
representing behavior over time and space. In all, there are two primary kinds of behavioral
things.

First, an interaction is a behavior that comprises a set of messages exchanged among a set of
objects within a particular context to accomplish a specific purpose. The behavior of a society of
objects or of an individual operation may be specified with an interaction. An interaction involves
a number of other elements, including messages, action sequences (the behavior invoked by a
message), and links (the connection between objects). Graphically, a message is rendered as a
directed line, almost always including the name of its operation, as in Figure 2-8.

Figure 2-8 Messages

display

>

Second, a state machine is a behavior that specifies the sequences of states an object or an
interaction goes through during its lifetime in response to events, together with its responses to
those events. The behavior of an individual class or a collaboration of classes may be specified
with a state machine. A state machine involves a number of other elements, including states,
transitions (the flow from state to state), events (things that trigger a transition), and activities (the
response to a transition). Graphically, a state is rendered as a rounded rectangle, usually
including its name and its substates, if any, as in Figure 2-9.

State machines are discussed in Chapter 21.

Figure 2-9 States

4 N

Waiting

L g

These two elements—interactions and state machines—are the basic behavioral things that you
may include in a UML model. Semantically, these elements are usually connected to various
structural elements, primarily classes, collaborations, and objects.

Grouping Things

Grouping things are the organizational parts of UML models. These are the boxes into which a
model can be decomposed. In all, there is one primary kind of grouping thing, namely, packages.

Packages are discussed in Chapter 12.

A package is a general-purpose mechanism for organizing elements into groups. Structural
things, behavioral things, and even other grouping things may be placed in a package. Unlike
components (which exist at run time), a package is purely conceptual (meaning that it exists only
at development time). Graphically, a package is rendered as a tabbed folder, usually including
only its name and, sometimes, its contents, as in Figure 2-10.

Figure 2-10 Packages

Business rules

Packages are the basic grouping things with which you may organize a UML model. There are
also variations, such as frameworks, models, and subsystems (kinds of packages).

Notes are discussed in Chapter 6.
Annotational Things

Annotational thingsare the explanatory parts of UML models. These are the comments you may
apply to describe, illuminate, and remark about any element in a model. There is one primary kind
of annotational thing, called a note. A note is simply a symbol for rendering constraints and
comments attached to an element or a collection of elements. Graphically, a note is rendered as
a rectangle with a dog-eared corner, together with a textual or graphical comment, as in Figure
2-11.

Figure 2-11 Notes

return copy
of self

This element is the one basic annotational thing you may include in a UML model. You'll typically
use notes to adorn your diagrams with constraints or comments that are best expressed in
informal or formal text. There are also variations on this element, such as requirements (which
specify some desired behavior from the perspective of outside the model).
Relationships in the UML
There are four kinds of relationships in the UML.:

1. Dependency

2. Association

3. Generalization

4. Realization

These relationships are the basic relational building blocks of the UML. You use them to write
well-formed models.

Dependencies are discussed in Chapters 5 and 10.

First, a dependency is a semantic relationship between two things in which a change to one thing
(the independent thing) may affect the semantics of the other thing (the dependent thing).
Graphically, a dependency is rendered as a dashed line, possibly directed, and occasionally
including a label, as in Figure 2-12.

Figure 2-12 Dependencies

Associations are discussed in Chapters 5 and 10.

Second, an association is a structural relationship that describes a set of links, a link being a
connection among objects. Aggregation is a special kind of association, representing a structural
relationship between a whole and its parts. Graphically, an association is rendered as a solid line,
possibly directed, occasionally including a label, and often containing other adornments, such as
multiplicity and role names, as in Figure 2-13.

Figure 2-13 Associations

0..1 "

employer employee

Generalizations are discussed in Chapters 5 and 10.

Third, a generalization is a specialization/generalization relationship in which objects of the
specialized element (the child) are substitutable for objects of the generalized element (the
parent). In this way, the child shares the structure and the behavior of the parent. Graphically, a
generalization relationship is rendered as a solid line with a hollow arrowhead pointing to the

parent, as in Figure 2-14.

Fourth, a realization is a semantic relationship between classifiers, wherein one classifier
specifies a contract that another classifier guarantees to carry out. You'll encounter realization
relationships in two places: between interfaces and the classes or components that realize them,
and between use cases and the collaborations that realize them. Graphically, a realization
relationship is rendered as a cross between a generalization and a dependency relationship, as in

Figure 2-15.

Figure 2-14 Generalizations

Realizations are discussed in Chapter 10.

Figure 2-15 Realization

These four elements are the basic relational things you may include in a UML model. There are
also variations on these four, such as refinement, trace, include, and extend (for dependencies).

The five views of an architecture are discussed in the following section.
Diagrams in the UML

A diagram is the graphical presentation of a set of elements, most often rendered as a connected
graph of vertices (things) and arcs (relationships). You draw diagrams to visualize a system from
different perspectives, so a diagram is a projection into a system. For all but the most trivial
systems, a diagram represents an elided view of the elements that make up a system. The same
element may appear in all diagrams, only a few diagrams (the most common case), or in no
diagrams at all (a very rare case). In theory, a diagram may contain any combination of things
and relationships. In practice, however, a small number of common combinations arise, which are
consistent with the five most useful views that comprise the architecture of a software-intensive
system. For this reason, the UML includes nine such diagrams:

1. Class diagram
2. Object diagram
3. Use case diagram
4. Sequence diagram
5. Collaboration diagram
6. Statechart diagram
7. Activity diagram
8. Component diagram
9. Deployment diagram
Class diagrams are discussed in Chapter 8.

A class diagram shows a set of classes, interfaces, and collaborations and their relationships.
These diagrams are the most common diagram found in modeling object-oriented systems. Class
diagrams address the static design view of a system. Class diagrams that include active classes
address the static process view of a system.

Object diagrams are discussed in Chapter 14

An object diagram shows a set of objects and their relationships. Object diagrams represent static
shapshots of instances of the things found in class diagrams. These diagrams address the static
design view or static process view of a system as do class diagrams, but from the perspective of
real or prototypical cases.

Use case diagrams are discussed in Chapter 17.

A use case diagram shows a set of use cases and actors (a special kind of class) and their
relationships. Use case diagrams address the static use case view of a system. These diagrams
are especially important in organizing and modeling the behaviors of a system.

Interaction diagrams are discussed in Chapter 18.

Both sequence diagrams and collaboration diagrams are kinds of interaction diagrams. An shows
an interaction, consisting of a set of objects and their relationships, including the messages that
may be dispatched among them. Interaction diagrams address the dynamic view of a system. A
sequence diagram is an interaction diagram that emphasizes the time-ordering of messages; a

collaboration diagram is an interaction diagram that emphasizes the structural organization of the
objects that send and receive messages. Sequence diagrams and collaboration diagrams are
isomorphic, meaning that you can take one and transform it into the other.

Statechart diagrams are discussed in Chapter 24.

A statechart diagram shows a state machine, consisting of states, transitions, events, and
activities. Statechart diagrams address the dynamic view of a system. They are especially
important in modeling the behavior of an interface, class, or collaboration and emphasize the
event-ordered behavior of an object, which is especially useful in modeling reactive systems.

Activity diagrams are discussed in Chapter 19.

An activity diagram is a special kind of a statechart diagram that shows the flow from activity to
activity within a system. Activity diagrams address the dynamic view of a system. They are
especially important in modeling the function of a system and emphasize the flow of control
among objects.

Component diagrams are discussed in Chapter 29.

A component diagram shows the organizations and dependencies among a set of components.
Component diagrams address the static implementation view of a system. They are related to
class diagrams in that a component typically maps to one or more classes, interfaces, or
collaborations.

Deployment diagrams are discussed in Chapter 30.

A deployment diagram shows the configuration of run-time processing nodes and the
components that live on them. Deployment diagrams address the static deployment view of an
architecture. They are related to component diagrams in that a node typically encloses one or
more components.

This is not a closed list of diagrams. Tools may use the UML to provide other kinds of diagrams,
although these nine are by far the most common you will encounter in practice.

Rules of the UML

The UML's building blocks can't simply be thrown together in a random fashion. Like any
language, the UML has a number of rules that specify what a well-formed model should look like.
A well-formed model is one that is semantically self-consistent and in harmony with all its related
models.

The UML has semantic rules for

* Names What you can call things, relationships, and diagrams

* Scope The context that gives specific meaning to a name

* Visibility How those names can be seen and used by others

* Integrity How things properly and consistently relate to one another
» Execution What it means to run or simulate a dynamic model

Models built during the development of a software-intensive system tend to evolve and may be
viewed by many stakeholders in different ways and at different times. For this reason, it is
common for the development team to not only build models that are well-formed, but also to build
models that are

* Elided |Certain elements are hidden to simplify the view

* Incomplete |Certain elements may be missing

* Inconsistent |The integrity of the model is not guaranteed

These less-than-well-formed models are unavoidable as the details of a system unfold and churn
during the software development life cycle. The rules of the UML encourage you—but do not
force you—to address the most important analysis, design, and implementation questions that
push such models to become well-formed over time.

Common Mechanisms in the UML

A building is made simpler and more harmonious by the conformance to a pattern of common
features. A house may be built in the Victorian or French country style largely by using certain
architectural patterns that define those styles. The same is true of the UML. It is made simpler by
the presence of four common mechanisms that apply consistently throughout the language.

1. Specifications

2. Adornments

3. Common divisions

4. Extensibility mechanisms
Specifications

The UML is more than just a graphical language. Rather, behind every part of its graphical
notation there is a specification that provides a textual statement of the syntax and semantics of
that building block. For example, behind a class icon is a specification that provides the full set of
attributes, operations (including their full signatures), and behaviors that the class embodies;
visually, that class icon might only show a small part of this specification. Furthermore, there
might be another view of that class that presents a completely different set of parts yet is still
consistent with the class's underlying specification. You use the UML's graphical notation to
visualize a system; you use the UML's specification to state the system's details. Given this split,
it's possible to build up a model incrementally by drawing diagrams and then adding semantics to
the model's specifications, or directly by creating a specification, perhaps by reverse engineering
an existing system, and then creating diagrams that are projections into those specifications.

The UML's specifications provide a semantic backplane that contains all the parts of all the
models of a system, each part related to one another in a consistent fashion. The UML's
diagrams are thus simply visual projections into that backplane, each diagram revealing a specific
interesting aspect of the system.

Notes and other adornments are discussed in Chapter 6.
Adornments

Most elements in the UML have a unique and direct graphical notation that provides a visual
representation of the most important aspects of the element. For example, the notation for a class
is intentionally designed to be easy to draw, because classes are the most common element
found in modeling object-oriented systems. The class notation also exposes the most important
aspects of a class, namely its name, attributes, and operations.

A class's specification may include other details, such as whether it is abstract or the visibility of
its attributes and operations. Many of these details can be rendered as graphical or textual
adornments to the class's basic rectangular notation. For example, Figure 2-16 shows a class,
adorned to indicate that it is an abstract class with two public, one protected, and one private
operation.

Figure 2-16 Adornments

Transaction

+ execute()

+ rollback()

priority()

- timestamp()

Every element in the UML's notation starts with a basic symbol, to which can be added a variety
of adornments specific to that symbol.

Common Divisions
In modeling object-oriented systems, the world often gets divided in at least a couple of ways.
Objects are discussed in Chapter 13.

First, there is the division of class and object. A class is an abstraction; an object is one concrete
manifestation of that abstraction. In the UML, you can model classes as well as objects, as shown

in Figure 2-17.
Figure 2-17 Classes And Objects

Jan : Customer

Customer

name
address . Customer

phone

Elyse

In this figure, there is one class, named Cust oner , together with three objects: Jan (which is
marked explicitly as being a Cust oner object), : Cust oner (an anonymous Cust oner object),
and El yse (which in its specification is marked as being a kind of Cust oner object, although it's
not shown explicitly here).

Almost every building block in the UML has this same kind of class/object dichotomy. For
example, you can have use cases and use case instances, components and component
instances, nodes and node instances, and so on. Graphically, the UML distinguishes an object by
using the same symbol as its class and then simply underlying the object's name.

Interfaces are discussed in Chapter 11.

Second, there is the separation of interface and implementation. An interface declares a contract,
and an implementation represents one concrete realization of that contract, responsible for
faithfully carrying out the interface's complete semantics. In the UML, you can model both
interfaces and their implementations, as shown in Figure 2-18.

Figure 2-18 Interfaces And Implementations

spellingwizard.dll
IlUnknown

ISpelling

In this figure, there is one component named spel | i ngwi zar d. dl | that implements two
interfaces, | Unknown and | Spel | i ng.

Almost every building block in the UML has this same kind of interface/ implementation
dichotomy. For example, you can have use cases and the collaborations that realize them, as
well as operations and the methods that implement them.

The UML's extensibility mechanisms are discussed in Chapter 6.
Extensibility Mechanisms

The UML provides a standard language for writing software blueprints, but it is not possible for
one closed language to ever be sufficient to express all possible nuances of all models across all
domains across all time. For this reason, the UML is opened-ended, making it possible for you to
extend the language in controlled ways. The UML's extensibility mechanisms include

Stereotypes
Tagged values
Constraints

A stereotype extends the vocabulary of the UML, allowing you to create new kinds of building
blocks that are derived from existing ones but that are specific to your problem. For example, if
you are working in a programming language, such as Java or C++, you will often want to model
exceptions. In these languages, exceptions are just classes, although they are treated in very
special ways. Typically, you only want to allow them to be thrown and caught, nothing else. You
can make exceptions first class citizens in your models—meaning that they are treated like basic
building blocks—by marking them with an appropriate stereotype, as for the class Over f | owin

Figure 2-19.
Figure 2-19 Extensibility Mechanisms

EventQueue

{version = 3.2
author = egb}

«wexception» < _______ i
Overflow
add() ----1---- {ordered}
remove()
flush()

A tagged value extends the properties of a UML building block, allowing you to create new
information in that element's specification. For example, if you are working on a shrink-wrapped
product that undergoes many releases over time, you often want to track the version and author
of certain critical abstractions. Version and author are not primitive UML concepts. They can be
added to any building block, such as a class, by introducing new tagged values to that building
block. In Figure 2-19, for example, the class Event Queue is extended by marking its version
and author explicitly.

A constraint extends the semantics of a UML building block, allowing you to add new rules or
modify existing ones. For example, you might want to constrain the Event Queue class so that all
additions are done in order. As Figure 2-19 shows, you can add a constraint that explicitly
marks these for the operation add.

Collectively, these three extensibility mechanisms allow you to shape and grow the UML to your
project's needs. These mechanisms also let the UML adapt to new software technology, such as
the likely emergence of more powerful distributed programming languages. You can add new
building blocks, modify the specification of existing ones, and even change their semantics.
Naturally, it's important that you do so in controlled ways so that through these extensions, you
remain true to the UML's purpose—the communication of information.

Architecture
The need for viewing complex systems from different perspectives is discussed in Chapter 1.

Visualizing, specifying, constructing, and documenting a software-intensive system demands that
the system be viewed from a number of perspectives. Different stakeholders—end users,
analysts, developers, system integrators, testers, technical writers, and project managers—each
bring different agendas to a project, and each looks at that system in different ways at different
times over the project's life. A system's architecture is perhaps the most important artifact that
can be used to manage these different viewpoints and so control the iterative and incremental
development of a system throughout its life cycle.

Architecture is the set of significant decisions about
The organization of a software system

The selection of the structural elements and their interfaces by which the system is
composed

Their behavior, as specified in the collaborations among those elements

The composition of these structural and behavioral elements into progressively larger
subsystems

The architectural style that guides this organization: the static and dynamic elements and
their interfaces, their collaborations, and their composition

Software architecture is not only concerned with structure and behavior, but also with usage,
functionality, performance, resilience, reuse, comprehensibility, economic and technology
constraints and trade-offs, and aesthetic concerns.

Modeling the architecture of a system is discussed in Chapter 31.
As Figure 2-20 illustrates, the architecture of a software-intensive system can best be described
by five interlocking views. Each view is a projection into the organization and structure of the

system, focused on a particular aspect of that system.

Figure 2-20 Modeling a System's Architecture

wocabulany ayslam M.‘:smnhl:,-
Illl'":l!ul'l'ﬂlﬁ:f' n;;l;l-':1i5;.ra|:il_1r| rhanagaman
Design view Implementation view
behavior { UEE case)
Wiew
Process view Deployment view
performance sysiam lopology
scalability dstribulion
thraughpul dalivary
inslallation

The use case view of a system encompasses the use cases that describe the behavior of the
system as seen by its end users, analysts, and testers. This view doesn't really specify the
organization of a software system. Rather, it exists to specify the forces that shape the system's
architecture. With the UML, the static aspects of this view are captured in use case diagrams; the
dynamic aspects of this view are captured in interaction diagrams, statechart diagrams, and
activity diagrams.

The design view of a system encompasses the classes, interfaces, and collaborations that form
the vocabulary of the problem and its solution. This view primarily supports the functional
requirements of the system, meaning the services that the system should provide to its end
users. With the UML, the static aspects of this view are captured in class diagrams and object
diagrams; the dynamic aspects of this view are captured in interaction diagrams, statechart
diagrams, and activity diagrams.

The process view of a system encompasses the threads and processes that form the system's
concurrency and synchronization mechanisms. This view primarily addresses the performance,
scalability, and throughput of the system. With the UML, the static and dynamic aspects of this
view are captured in the same kinds of diagrams as for the design view, but with a focus on the
active classes that represent these threads and processes.

The implementation view of a system encompasses the components and files that are used to
assemble and release the physical system. This view primarily addresses the configuration
management of the system's releases, made up of somewhat independent components and files
that can be assembled in various ways to produce a running system. With the UML, the static
aspects of this view are captured in component diagrams; the dynamic aspects of this view are
captured in interaction diagrams, statechart diagrams, and activity diagrams.

The deployment view of a system encompasses the nodes that form the system's hardware
topology on which the system executes. This view primarily addresses the distribution, delivery,
and installation of the parts that make up the physical system. With the UML, the static aspects of
this view are captured in deployment diagrams; the dynamic aspects of this view are captured in
interaction diagrams, statechart diagrams, and activity diagrams.

Each of these five views can stand alone so that different stakeholders can focus on the issues of
the system's architecture that most concern them. These five views also interact with one
another—nodes in the deployment view hold components in the implementation view that, in turn,
represent the physical realization of classes, interfaces, collaborations, and active classes from
the design and process views. The UML permits you to express every one of these five views and
their interactions.

Software Development Life Cycle

The Rational Unified Process is summarized in Appendix C; a more complete treatment of this
process is discussed in The Unified Software Development Process.

The UML is largely process-independent, meaning that it is not tied to any particular software
development life cycle. However, to get the most benefit from the UML, you should consider a
process that is

Use case driven
Architecture-centric
Iterative and incremental

Use case driven means that use cases are used as a primary artifact for establishing the desired
behavior of the system, for verifying and validating the system's architecture, for testing, and for
communicating among the stakeholders of the project.

Architecture-centric means that a system's architecture is used as a primary artifact for
conceptualizing, constructing, managing, and evolving the system under development.

An iterative process is one that involves managing a stream of executable releases. An is one
that involves the continuous integration of the system's architecture to produce these releases,
with each new release embodying incremental improvements over the other. Together, an
iterative and incremental process is risk-driven, meaning that each new release is focused on
attacking and reducing the most significant risks to the success of the project.

This use case driven, architecture-centric, and iterative/incremental process can be broken into
phases. A phase is the span of time between two major milestones of the process, when a well-
defined set of objectives are met, artifacts are completed, and decisions are made whether to
move into the next phase. As Figure 2-21 shows, there are four phases in the software
development life cycle: inception, elaboration, construction, and transition. In the diagram,
workflows are plotted against these phases, showing their varying degrees of focus over time.

Figure 2-21 Software Development Life Cycle

Inception | Elaboration Construction Transition

Process Workflows
Business Modeling ——=""_1 o}

e |
Requirements o e e

. i]
Analysis and Design . — i
Implementation __ B B

Test — e, Y [T
Deployment SR

Supporiing Workflows

Cenfiguration and |
Ey———
Change Management N
Froject Management I W e N
Environment A el e
preliminary | iter | iter | iter |iter |[iter | iter | iter

iteration(s) | #1 #2 #in | #ntl | #n+2 | #m | #m+1

Inception is the first phase of the process, when the seed idea for the development is brought up
to the point of being—at least internally—sufficiently well-founded to warrant entering into the
elaboration phase.

Elaboration is the second phase of the process, when the product vision and its architecture are
defined. In this phase, the system's requirements are articulated, prioritized, and baselined. A
system's requirements may range from general vision statements to precise evaluation criteria,
each specifying particular functional or nonfunctional behavior and each providing a basis for
testing.

Construction is the third phase of the process, when the software is brought from an executable
architectural baseline to being ready to be transitioned to the user community. Here also, the
system's requirements and especially its evaluation criteria are constantly reexamined against the
business needs of the project, and resources are allocated as appropriate to actively attack risks
to the project.

Transition is the fourth phase of the process, when the software is turned into the hands of the
user community. Rarely does the software development process end here, for even during this
phase, the system is continuously improved, bugs are eradicated, and features that didn't make
an earlier release are added.

One element that distinguishes this process and that cuts across all four phases is an iteration.
An iteration is a distinct set of activities, with a baselined plan and evaluation criteria that result in
a release, either internal or external. This means that the software development life cycle can be
characterized as involving a continuous stream of executable releases of the system's
architecture. It is this emphasis on architecture as an important artifact that drives the UML to
focus on modeling the different views of a system's architecture.

Chapter 3. Hello, World!

In this chapter

Classes and components

Static models and dynamic models
Connections among models
Extending the UML

Brian Kernighan and Dennis Ritchie, the authors of the C programming language, point out that
"the only way to learn a new programming language is by writing programs in it." The same is
true of the UML. The only way to learn the UML is by writing models in it.

The first program many developers write when approaching a new programming language is a
simple one, involving little more than printing the string "Hello, World!" This is a reasonable
starting point, because mastering this trivial application provides some instant gratification. It also
covers all the infrastructure needed to get something running.

This is where we begin with the UML. Modeling "Hello, World!" is about the simplest use of the
UML you'll ever find. However, this application is deceptively easy because underneath it all there
are some interesting mechanisms that make it work. These mechanisms can easily be modeled
with the UML, providing a richer view of this simple application.

Key Abstractions

In Java, the applet for printing "Hello, World!" in a Web browser is quite simple:

i nport java.awt. G aphi cs;
class Hell owrl d extends java. appl et. Appl et {
public void paint (Gaphics g) {
g.drawsString("Hello, Wrld!'", 10, 10);
}
}

The first line of code:

i nport java.awt. G aphics;

makes the class G aphi cs directly available to the code that follows. The | ava. awt prefix
specifies the Java package in which the class G- aphi cs lives.

The second line of code:

class Helloworl d extends java. appl et. Appl et {

introduces a new class named Hel | o\V\r | d and specifies that it is a kind of class just like
Appl et , which lives in the package | ava. appl et .

The next three lines of code:

public void paint (Gaphics g) {
g.drawsString("Hello, Wrld!", 10, 10);
}

declare an operation named pai nt , whose implementation invokes another operation, named
dr awst ri ng, responsible for printing the string " Hel | o, Vér | d! " at the given coordinates. In
the usual object-oriented fashion, dr awsSt r i ng is an operation on a parameter named g, whose
type is the class G aphi cs.

Classes are discussed in Chapters 4 and 9.

Modeling this application in the UML is straightforward. As Figure 3-1 shows, you can represent
the class Hel | o\V\or | d graphically as a rectangular icon. Its pai nt operation is shown here, as
well, with all its formal parameters elided and its implementation specified in the attached note.

Figure 3-1 Key Abstractions for Hel | o\Wor | d

HelloWorld

: g.drawString
paint() - - ---fF----- (“Hello, World?”, 10, 10)

Note

The UML is not a visual programming language, although, as the figure shows, the
UML does allow— but does not require—a tight coupling to a variety of programming
languages, such as Java. The UML is designed to allow models to be transformed into
code and to allow code to be reengineered back into models. Some things are best
written in the syntax of a textual programming language (for example, mathematical
expressions); whereas, other things are best visualized graphically in the UML (for
example, hierarchies of classes).

This class diagram captures the basics of the "Hello, World!" application, but it leaves out a
number of things. As the preceding code specifies, two other classes—Appl et and G- aphi cs—
are involved in this application and each is used in a different way. The class Appl et is used as
the parent of Hel | o\V\r | d, and the class G- aphi cs is used in the signature and implementation
of one of its operations, pai nt . You can represent these classes and their different relationships
to the class Hel | oVor | d in a class diagram, as shown in Figure 3-2.

Figure 3-2 Immediate Neighbors Surrounding Hel | oV\or | d

Applet

/\

HelloWorld

paintf) = F----- >| Graphics

Relationships are discussed in Chapters 5 and 10.

The Appl et and Gr aphi cs classes are represented graphically as rectangular icons. No
operations are shown for either of them, and so their icons are elided. The directed line with the
hollow arrowhead from Hel | oWor | d to Appl et represents generalization, which in this case
means that Hel | o\V\r | d is a child of Appl et . The dashed directed line from Hel | o\Wor | d to
Graphi cs represents a dependency relationship, which means that Hel | o\V\r | d uses

G aphi cs.

This is not the end of the framework upon which Hel | oV\r | d is built. If you study the Java
libraries for Appl et and Gr aphi cs, you will discover that both of these classes are part of a
larger hierarchy. Tracing just the classes that Appl et extends and implements, you can generate
another class diagram, shown in Figure 3-3.

Figure 3-3 Hel | oWbr | d Inheritance Hierarchy

Object

O Component /:?
ImageObserver f?
Container

Panel /U
Applet /?
HelloWorld ﬁ

Note

This figure is a good example of a diagram generated by reverse engineering an
existing system. Reverse engineering is the creation of a model from code.

This figure makes it clear that Hel | o\V\or | d is just a leaf in a larger hierarchy of classes.

Hel | oVor | d is a child of Appl et ; Appl et is a child of Panel ; Panel is a child of

Cont ai ner; Contai ner is a child of Conponent ; and Conponent is a child of Ooj ect
which is the parent class of every class in Java. This model thus matches the Java library—each
child extends some parent.

Interfaces are discussed in Chapter 11.

The relationship between | negeCbhser ver and Conponent is a bit different, and the class
diagram reflects this difference. In the Java library, | nageChser ver is an interface, which,
among other things, means that it has no implementation and instead requires that other classes
implement it. As the figure shows, you can represent an interface in the UML as a circle. The fact
that Conponent implements | mrageCbser ver is represented by the solid line from the
implementation (Conponent) to its interface (| nregeCbser ver).

As these figures show, Hel | oV\r | d collaborates directly with only two classes (Appl et and
Graphi cs), and these two classes are but a small part of the larger library of predefined Java
classes. To manage this large collection, Java organizes its interfaces and classes in a number of
different packages. The root package in the Java environment is named, not surprisingly, | ava.
Nested inside this package are several other packages, which contain other packages, interfaces,
and classes. Obj ect lives in the package | ang, so its full path name is| ava. | ang. Obj ect .
Similarly, Panel , Cont ai ner , and Conponent live in awt ; the class Appl et lives in the
package appl et . The interface | nrageChser ver lives in the package i nage, which in turn
lives in the package awt , so its full path name is the rather lengthy string

java. awt . i mage. | nageQbser ver .

You can visualize this packaging in a class diagram, shown in Figure 3-4.

Figure 3-4 Hel | oWbr | d Packaging

java
1

HelloWorld +---- -2 applet

S > lang

Packages are discussed in Chapter 12.

As this figure shows, packages are represented in the UML as a tabbed folders. Packages may
be nested, and the dashed directed lines represent dependencies among these packages. For

example, Hel | oVor | d depends on the package | ava. appl et ,and | ava. appl et depends
on the package | ava. awt .

Mechanisms
Patterns and frameworks are discussed in Chapter 28.

The hardest part of mastering a library as rich as Java's is learning how its parts work together.
For example, how does Hel | o\Wor | d's pai nt operation get invoked? What operations must you
use if you want to change the behavior of this applet, such as making it print the string in a
different color? To answer these and other questions, you have to have a conceptual model of
the way these classes work together dynamically.

Processes and threads are discussed in Chapter 22.

Studying the Java library reveals that Hel | o\V\r | d's pai nt operation is inherited from
Conponent . This still begs the question of how this operation is invoked. The answer is that
pai nt is called as part of running the thread that encloses the applet, as Figure 3-5 illustrates.

Figure 3-5 Painting Mechanism

: Thread : Toolkit : ComponentPeer || target : HelloWorld

I I (]
nn 1 i

R |
- = callbackLoop

[
[
I
I
I
]
I
]
I

handleExpose i

Instances are discussed in Chapter 11.

This figure shows the collaboration of several objects, including one instance of the class

Hel | oWor | d. The other objects are a part of the Java environment and so, for the most part,
live in the background of the applets you create. In the UML, instances are represented just like
classes, but with their names underlined to distinguish them. The first three objects in this
diagram are anonymous—they have no unique name. The Hel | o\V\r | d object has a name

(t ar get) known by the Conponent Peer object.

Sequence diagrams are discussed in Chapter 18.

You can model the ordering of events using a sequence diagram, as in Figure 3-5. Here, the
sequence begins by running the Thr ead object, which in turn calls the Tool ki t 's r un operation.
The Tool ki t object then calls one of its own operations (cal | backLoop), which then calls the
Conponent Peer's handl eExpose operation. The Conponent Peer object then calls its target's
pai nt operation. The Conponent Peer object assumes that its target is a Conponent , butin
this case, the target is actually a child of Conponent (namely, Hel | oWr | d), and so

Hel | oWor | d's pai nt operation is dispatched polymorphically.

Components

"Hello, World!" is implemented as an applet and so never stands alone but, rather, is typically a
part of some Web page. The applet starts when its enclosing page is opened, triggered by some
browser mechanism that runs the applet's Thr ead object. However, it's not the Hel | oV\r | d
class that's directly a part of the Web page. Rather, it's a binary form of the class, created by a
Java compiler that transforms the source code representing that class into a component that can
be executed. This suggests a very different perspective of the system. Whereas all the earlier
diagrams represented a logical view of the applet, what's going on here is a view of the applet's
physical components.

Components are discussed in Chapter 25.
You can model this physical view using a component diagram, as in Figure 3-6.

Figure 3-6 Hel | oWor | d Components

hello.java

HelloWorld.class

hello.html o LE

Each of the icons in this figure represents a UML element in the implementation view of the
system. The component called hel | 0. | ava represents the source code for the logical class
Hel | oWor | d, soitis a file that may be manipulated by development environments and
configuration management tools. This source code can be transformed into the binary applet
hel | 0. cl ass by a Java compiler, making it suitable for execution by a computer's Java virtual
machine.

The UML's extensibility mechanisms are discussed in Chapter 6.

The canonical icon for a component is a rectangle with two tabs. The binary applet

Hel | oWor | d. cl ass is a variation of this basic symbol, with its lines made thicker, indicating that
it is an executable component (just like an active class). The icon for the hel | 0. | ava
component has been replaced with a user-defined icon, representing a text file. The icon for the
Web page hel | 0. ht 1 has been similarly tailored by extending the UML's notation. As the
figure indicates, this Web page has another component, hel | 0. | pg, which is represented by a
user-defined component icon, in this case providing a thumbnail sketch of the graphics image.
Because these latter three components use user-defined graphical symbols, their names are
placed outside the icon.

Note

The relationships among the class (Hel | o\\or | d), its source code (hel | 0.] ava),
and its object code (Hel | oVor | d. cl ass) are rarely modeled explicitly, although it is
sometimes useful to do so to visualize the physical configuration of a system. On the
other hand, it is common to visualize the organization of a Web-based system such as
this by using component diagrams to model its pages and other executable
components.

Part Il: Basic Structural Modeling

Chapter 4. Classes

In this chapter

Classes, attributes, operations, and responsibilities

Modeling the vocabulary of a system

Modeling the distribution of responsibilities in a system

Modeling nonsoftware things

Modeling primitive types

Making quality abstractions
Classes are the most important building block of any object-oriented system. A class is a
description of a set of objects that share the same attributes, operations, relationships, and

semantics. A class implements one or more interfaces.

Advanced features of classes are discussed in Chapter 9.

You use classes to capture the vocabulary of the system you are developing. These classes may
include abstractions that are part of the problem domain, as well as classes that make up an
implementation. You can use classes to represent software things, hardware things, and even
things that are purely conceptual.

Well-structured classes have crisp boundaries and form a part of a balanced distribution of
responsibilities across the system.

Getting Started

Modeling a system involves identifying the things that are important to your particular view. These
things form the vocabulary of the system you are modeling. For example, if you are building a
house, things like walls, doors, windows, cabinets, and lights are some of the things that will be
important to you as a home owner. Each of these things can be distinguished from the other.
Each of them also has a set of properties. Walls have a height and a width and are solid. Doors
also have a height and a width and are solid, as well, but have the additional behavior that allows
them to open in one direction. Windows are similar to doors in that both are openings that pass
through walls, but windows and doors have slightly different properties. Windows are usually (but
not always) designed so that you can look out of them instead of pass through them.

Individual walls, doors, and windows rarely exist in isolation, so you must also consider how
specific instances of these things fit together. The things you identify and the relationships you
choose to establish among them will be affected by how you expect to use the various rooms of
your home, how you expect traffic to flow from room to room, and the general style and feel you
want this arrangement to create.

Users will be concerned about different things. For example, the plumbers who help build your
house will be interested in things like drains, traps, and vents. You, as a home owner, won't
necessarily care about these things except insofar as they interact with the things in your view,
such as where a drain might be placed in a floor or where a vent might intersect with the roof line.

Objects are discussed in Chapter 13.

In the UML, all of these things are modeled as classes. A class is an abstraction of the things that
are a part of your vocabulary. A class is not an individual object, but rather represents a whole set
of objects. Thus, you may conceptually think of "wall" as a class of objects with certain common
properties, such as height, length, thickness, load-bearing or not, and so on. You may also think
of individual instances of wall, such as "the wall in the southwest corner of my study."

In software, many programming languages directly support the concept of a class. That's
excellent, because it means that the abstractions you create can often be mapped directly to a
programming language, even if these are abstractions of nonsoftware things, such as "customer,”
“"trade," or "conversation."

The UML provides a graphical representation of class, as well, as Figure 4-1 shows. This
notation permits you to visualize an abstraction apart from any specific programming language
and in a way that lets you emphasize the most important parts of an abstraction: its name,
attributes, and operations.

Figure 4-1 Classes

name

Shape

attributes

origin

move()
resize()

display()

|

Terms and Concepts

operations

A class is a description of a set of objects that share the same attributes, operations,
relationships, and semantics. Graphically, a class is rendered as a rectangle.

Names

A class hame must be unique within its enclosingpackage, as discussed in Chapter 12.

Every class must have a name that distinguishes it from other classes. A hame is a textual string.
That name alone is known as a simple name; a path name is the class name prefixed by the
name of the package in which that class lives. A class may be drawn showing only its name, as

Figure 4-2 shows.

Figure 4-2 Simple and Path Names

Customer

Temperature
Sensor simple names

Wall

Note

Business Rules::FraudAgeni

palh names

| java:awt:Rectangle

A class hame may be text consisting of any number of letters, numbers, and certain
punctuation marks (except for marks such as the colon, which is used to separate a
class name and the name of its enclosing package) and may continue over several
lines. In practice, class names are short nouns or noun phrases drawn from the
vocabulary of the system you are modeling. Typically, you capitalize the first letter of
every word in a class name, as in Cust oner or Tenper at ur eSensor .

Attributes

Attributes arerelated to the semantics ofaggregation, as discussed in Chapter 10.

An attribute is a named property of a class that describes a range of values that instances of the
property may hold. A class may have any number of attributes or no attributes at all. An attribute
represents some property of the thing you are modeling that is shared by all objects of that class.
For example, every wall has a height, width, and thickness; you might model your customers in
such a way that each has a name, address, phone number, and date of birth. An attribute is
therefore an abstraction of the kind of data or state an object of the class might encompass. At a
given moment, an object of a class will have specific values for every one of its class's attributes.
Graphically, attributes are listed in a compartment just below the class name. Attributes may be
drawn showing only their names, as shown in Figure 4-3.

Figure 4-3 Attributes

Ccustomer

attributes
name

address

phone
birthDate

Note

An attribute name may be text, just like a class name. In practice, an attribute name is
a short noun or noun phrase that represents some property of its enclosing class.
Typically, you capitalize the first letter of every word in an attribute name except the
first letter, as in nane or | oadBear i ng.

You can specify other features of anattribute, such as marking it read-only or shared by all
objects of the class, as discussed in Chapter 9.

You can further specify an attribute by stating its class and possibly a default initial value, as
shown Figure 4-4.

Figure 4-4 Attributes and Their Class

Wall

height : Float R
width : Float .,./
thickness : Float

isLoadBearing : Boolean = false

Operations

You can further specify the implementation of anoperation by using a note, as described in
Chapter 6, or by using an activity diagram, as discussed in Chapter 19.

An operation is the implementation of a service that can be requested from any object of the class
to affect behavior. In other words, an operation is an abstraction of something you can do to an
object and that is shared by all objects of that class. A class may have any number of operations
or no operations at all. For example, in a windowing library such as the one found in Java's awt
package, all objects of the class Rect angl e can be moved, resized, or queried for their
properties. Often (but not always), invoking an operation on an object changes the object's data
or state. Graphically, operations are listed in a compartment just below the class attributes.
Operations may be drawn showing only their names, as in Figure 4-5.

Figure 4-5 Operations

Rectangle

operations

add()

grow()
move()

ISEmpty()

Note

An operation name may be text, just like a class name. In practice, an operation name
is a short verb or verb phrase that represents some behavior of its enclosing class.
Typically, you capitalize the first letter of every word in an operation name except the
first letter, as in nove ori sEnpty.

You can specify other features of an operation, such as marking it polymorphic or constant, or
specifying its visibility, as discussed in Chapter 9.

You can specify an operation by stating its signature, covering the name, type, and default value
of all parameters and (in the case of functions) a return type, as shown in Figure 4-6.

Figure 4-6 Operations and Their Signatures

TemperatureSensor

operations

reset()
setAlarm(t : Temperature)
value() : Temperature

Organizing Attributes and Operations

When drawing a class, you don't have to show every attribute and every operation at once. In
fact, in most cases, you can't (there are too many of them to put in one figure) and you probably
shouldn't (only a subset of these attributes and operations are likely to be relevant to a specific
view). For these reasons, you can elide a class, meaning that you can choose to show only some
or none of a class's attributes and operations. An empty compartment doesn't necessarily mean
there are no attributes or operations, just that you didn't choose to show them. You can explicitly
specify that there are more attributes or properties than shown by ending each list with an ellipsis

).
Stereotypes are discussed in Chapter 6.

To better organize long lists of attributes and operations, you can also prefix each group with a
descriptive category by using stereotypes, as shown in Figure 4-7.

Figure 4-7 Stereotypes for Class Features

FraudAgent

«constructor» e&———___|

new()
new(p : Policy)
«Process»

process(o . Order) sleraolyps

;;{ﬁlijery;: o—]
isSuspect(o : Order)
isFraudulent(o : Order)

«helpery» O—///

validateOrder(o : Order)

Responsibilities
Responsibilities are an example of a defined stereotype , as discussed in Chapter 6.

A responsibility is a contract or an obligation of a class. When you create a class, you are making
a statement that all objects of that class have the same kind of state and the same kind of
behavior. At a more abstract level, these corresponding attributes and operations are just the
features by which the class's responsibilities are carried out. A \V\al | class is responsible for
knowing about height, width, and thickness; a Fr audAgent class, as you might find in a credit
card application, is responsible for processing orders and determining if they are legitimate,
suspect, or fraudulent; a Tenper at ur eSensor class is responsible for measuring temperature
and raising an alarm if the temperature reaches a certain point.

Modeling the semantics of aclass is discussed in Chapter 9.

When you model classes, a good starting point is to specify the responsibilities of the things in
your vocabulary. Techniques like CRC cards and use case-based analysis are especially helpful
here. A class may have any number of responsibilities, although, in practice, every well-structured
class has at least one responsibility and at most just a handful. As you refine your models, you
will translate these responsibilities into a set of attributes and operations that best fulfill the class's
responsibilities.

You can also draw the responsibilities of a class in a note, as discussed in Chapter 6.

Graphically, responsibilities can be drawn in a separate compartment at the bottom of the class
icon, as shown in Figure 4-8.

Figure 4-8 Responsibilities

FraudAgent

Responsibilities responsibilities

-- determine the risk of a
customer order

-- handle customer-specific
criteria for fraud

Note

Responsibilities are just free-form text. In practice, a single responsibility is written as a
phrase, a sentence, or (at most) a short paragraph.

Other Features
Advanced class concepts are discussed in Chapter 9.

Attributes, operations, and responsibilities are the most common features you'll need when you
create abstractions. In fact, for most models you build, the basic form of these three features will
be all you need to convey the most important semantics of your classes. Sometimes, however,
you'll need to visualize or specify other features, such as the visibility of individual attributes and
operations; language-specific features of an operation, such as whether it is polymorphic or
constant; or even the exceptions that objects of the class might produce or handle. These and
many other features can be expressed in the UML, but they are treated as advanced concepts.

Interfaces are discussed in Chapter 11.

When you build models, you will soon discover that almost every abstraction you create is some
kind of class. Sometimes, you will want to separate the implementation of a class from its
specification, and this can be expressed in the UML by using interfaces.

Active classes, components, and nodes are discussed in Chapters 22, 24, and 26, respectively.

When you start building more complex models, you will also find yourself encountering the same
kinds of classes over and over again, such as classes that represent concurrent processes and
threads, or classes that represent physical things, such as applets, Java Beans, COM+ objects,
files, Web pages, and hardware. Because these kinds of classes are so common and because
they represent important architectural abstractions, the UML provides active classes
(representing processes and threads), components (representing physical software components),
and nodes (representing hardware devices).

Class diagrams are discussed in Chapter 8.

Finally, classes rarely stand alone. Rather, when you build models, you will typically focus on
groups of classes that interact with one another. In the UML, these societies of classes form
collaborations and are usually visualized in class diagrams.

Common Modeling Techniques

Modeling the Vocabulary of a System

You'll use classes most commonly to model abstractions that are drawn from the problem you are
trying to solve or from the technology you are using to implement a solution to that problem. Each
of these abstractions is a part of the vocabulary of your system, meaning that, together, they
represent the things that are important to users and to implementers.

Use cases are discussed in Chapter 16.

For users, most abstractions are not that hard to identify because, typically, they are drawn from
the things that users already use to describe their system. Techniques such as CRC cards and
use case-based analysis are excellent ways to help users find these abstractions. For
implementers, these abstractions are typically just the things in the technology that are parts of
the solution.

To model the vocabulary of a system,

Identify those things that users or implementers use to describe the problem or solution.
Use CRC cards and use case-based analysis to help find these abstractions.

For each abstraction, identify a set of responsibilities. Make sure that each class is crisply
defined and that there is a good balance of responsibilities among all your classes.

Provide the attributes and operations that are needed to carry out these responsibilities
for each class.

Figure 4-9 shows a set of classes drawn from a retail system, including Cust oner, Or der , and
Product . This figure includes a few other related abstractions drawn from the vocabulary of the
problem, such as Shi pnent (used to track orders), | nvoi ce (used to bill orders), and

War ehouse (where products are located prior to shipment). There is also one solution-related
abstraction, Tr ansact i on, which applies to orders and shipments.

Figure 4-9 Modeling the Vocabulary of a System

Warehouse
Customer
name Product
address Order a
phone item '
birthDate : bl
quantity price
location
Invoice
Shipment
Transaction
actions
: Responsibilities
commit() -- maintain the information
roliBack() regarding products shipped
wasSuccessful() against an order
-- track the status and location
of the shipped products

Packages are discussed in Chapter 12.

As your models get larger, many of the classes you find will tend to cluster together in groups that
are conceptually and semantically related. In the UML, you can use packages to model these
clusters of classes.

Modeling behavior is discussed in Sections 4 and 5.

Most of your models will rarely be completely static. Instead, most abstractions in your system's
vocabulary will interact with one another in dynamic ways. In the UML, there are a number of
ways to model this dynamic behavior.

Modeling the Distribution of Responsibilities in a System

Once you start modeling more than just a handful of classes, you will want to be sure that your
abstractions provide a balanced set of responsibilities. What this means is that you don't want
any one class to be too big or too small. Each class should do one thing well. If you abstract
classes that are too big, you'll find that your models are hard to change and are not very
reusable. If you abstract classes that are too small, you'll end up with many more abstractions
than you can reasonably manage or understand. You can use the UML to help you visualize and
specify this balance of responsibilities.

To model the distribution of responsibilities in a system,

Identify a set of classes that work together closely to carry out some behavior.

Identify a set of responsibilities for each of these classes.

Look at this set of classes as a whole, split classes that have too many responsibilities
into smaller abstractions, collapse tiny classes that have trivial responsibilities into larger
ones, and reallocate responsibilities so that each abstraction reasonably stands on its
own.

Consider the ways in which those classes collaborate with one another, and redistribute
their responsibilities accordingly so that no class within a collaboration does too much or
too little.

Collaborations are discussed in Chapter 27.
This set of classes forms a pattern, as discussed in Chapter 28.

For example, Figure 4-10 shows a set of classes drawn from Smalltalk, showing the distribution
of responsibilities among Vodel , Vi ew, and Cont r ol | er classes. Notice how all these classes
work together such that no one class does too much or too little.

Figure 4-10 Modeling the Distribution of Responsibilities in a System

Model

View

Responsibilities
-- manage the state of
the model Responsibilities
-- render the model
on the screen
-- manage movement
Controller and resizing of the
view
-- intercept user events

Responsibilities
-- synchronize changes
in the model and its
views

Modeling Nonsoftware Things

Sometimes, the things you model may never have an analog in software. For example, the
people who send invoices and the robots that automatically package orders for shipping from a
warehouse might be a part of the workflow you model in a retail system. Your application might
not have any software that represents them (unlike customers in the example above, since your
system will probably want to maintain information about them).

To model nonsoftware things,

Stereotypes are discussed in Chapter 6.

Model the thing you are abstracting as a class.

If you want to distinguish these things from the UML's defined building blocks, create a
new building block by using stereotypes to specify these new semantics and to give a
distinctive visual cue.

If the thing you are modeling is some kind of hardware that itself contains software,
consider modeling it as a kind of node, as well, so that you can further expand on its
structure.

Nodes are discussed in Chapter 26.
Note

The UML is mainly intended for modeling software-intensive systems, although, in
conjunction with textual hardware modeling languages, such as VHDL, the UML can
be quite expressive for modeling hardware systems.

Things that are external to your system are often modeled as actors, as discussed in Chapter
16.

As Figure 4-11 shows, it's perfectly normal to abstract humans (like
Account sRecel vabl eAgent) and hardware (like Robot) as classes, because each represents
a set of objects with a common structure and a common behavior.

Figure 4-11 Modeling Nonsoftware Things

Robot

Accounts Receivable Agent

processOrder()
changeOrder()
status()

Modeling Primitive Types

Types are discussed in Chapter 11.

At the other extreme, the things you model may be drawn directly from the programming
language you are using to implement a solution. Typically, these abstractions involve primitive
types, such as integers, characters, strings, and even enumeration types, that you might create
yourself.

To model primitive types,

Model the thing you are abstracting as a type or an enumeration, which is rendered using
class notation with the appropriate stereotype.

If you need to specify the range of values associated with this type, use constraints.

Constraints are described in Chapter 6.

Types are discussed in Chapter 11.

As Figure 4-12 shows, these things can be modeled in the UML as types or enumerations,
which are rendered just like classes but are explicitly marked via stereotypes. Things like integers
(represented by the class | nt) are modeled as types, and you can explicitly indicate the range of
values these things can take on by using a constraint. Similarly, enumeration types, such as

Bool ean and St at us, can be modeled as enumerations, with their individual values provided as
attributes.

Figure 4-12 Modeling Primitive Types

«type»
Int
{values range from
-2**31-1 to +2**31} «enumeration»
Boolean
false
frue
«enumeration»
Status
idle
working
error

Note
Some languages, such as C and C++, let you set an equivalent integer value for an

enumeration. You can model this in the UML by marking the attributes that denote an
enumeration with a constant default initial value.

Hints and Tips

When you model classes in the UML, remember that every class should map to some tangible or
conceptual abstraction in the domain of the end user or the implementer. A well-structured class

Provides a crisp abstraction of something drawn from the vocabulary of the problem
domain or the solution domain.

Embodies a small, well-defined set of responsibilities and carries them all out very well.
Provides a clear separation of the abstraction's specification and its implementation.

Is understandable and simple yet extensible and adaptable.

When you draw a class in the UML,

Show only those properties of the class that are important to understanding the
abstraction in its context.

Organize long lists of attributes and operations by grouping them according to their
category.

Show related classes in the same class diagrams.

Chapter 5. Relationships

In this chapter
Dependency, generalization, and association relationships
Modeling simple dependencies
Modeling single inheritance
Modeling structural relationships
Creating webs of relationships

When you build abstractions, you'll discover that very few of your classes stand alone. Instead,
most of them collaborate with others in a number of ways. Therefore, when you model a system,
not only must you identify the things that form the vocabulary of your system, you must also
model how these things stand in relation to one another.

Advanced features of relationships are discussed in Chapter 10.

In object-oriented modeling, there are three kinds of relationships that are especially important:
dependencies, which represent using relationships among classes (including refinement, trace,
and bind relationships); generalizations, which link generalized classes to their specializations;
and associations, which represent structural relationships among objects. Each of these
relationships provides a different way of combining your abstractions.

Building webs of relationships is not unlike creating a balanced distribution of responsibilities
among your classes. Over-engineer, and you'll end up with a tangled mess of relationships that
make your model incomprehensible; under-engineer, and you'll have missed a lot of the richness
of your system embodied in the way things collaborate.

Getting Started

If you are building a house, things like walls, doors, windows, cabinets, and lights will form part of
your vocabulary. None of these things stands alone, however. Walls connect to other walls.
Doors and windows are placed in walls to form openings for people and for light. Cabinets and
lights are physically attached to walls and ceilings. You group walls, doors, windows, cabinets,
and lights together to form higher-level things, such as rooms.

Not only will you find structural relationships among these things, you'll find other kinds of
relationships, as well. For example, your house certainly has windows, but there are probably
many kinds of windows. You might have large bay windows that don't open, as well as small
kitchen windows that do. Some of your windows might open up and down; others, like patio
windows, will slide left and right. Some windows have a single pane of glass; others have double.

No matter their differences, there is some essential "window-ness" about each of them: Each is
an opening in a wall, and each is designed to let in light, air, and sometimes, people.

In the UML, the ways that things can connect to one another, either logically or physically, are
modeled as relationships. In object-oriented modeling, there are three kinds of relationships that
are most important: dependencies, generalizations, and associations.

Dependencies are using relationships. For example, pipes depend on the water heater to heat
the water they carry.

Generalizations connect generalized classes to more-specialized ones in what is known as
subclass/superclass or child/parent relationships. For example, a bay window is a kind of window
with large, fixed panes; a patio window is a kind of window with panes that open side to side.

Associations are structural relationships among instances. For example, rooms consist of walls
and other things; walls themselves may have embedded doors and windows; pipes may pass
through walls.

Other kinds of relationships, such as realization and refinement, are discussed in Chapter 10.

These three kinds of relationships cover most of the important ways in which things collaborate
with one another. Not surprisingly, they also map well to the ways that are provided by most
object-oriented programming languages to connect objects.

The UML provides a graphical representation for each of these kinds of relationships, as Figure
5-1 shows. This notation permits you to visualize relationships apart from any specific
programming language, and in a way that lets you emphasize the most important parts of a
relationship: its name, the things it connects, and its properties.

Figure 5-1 Relationships

dependency
Window

open()

closa()
move()
display()
handleEvent()

Event

generalization

% association
CansoleWindow DialogBox Contral

Terms and Concepts

A relationship is a connection among things. In object-oriented modeling, the three most
important relationships are dependencies, generalizations, and associations. Graphically, a
relationship is rendered as a path, with different kinds of lines used to distinguish the kinds of
relationships.

Dependency

A dependency is a using relationship that states that a change in specification of one thing (for
example, class Event) may affect another thing that uses it (for example, class W ndow), but not
necessarily the reverse. Graphically, a dependency is rendered as a dashed directed line,
directed to the thing being depended on. Use dependencies when you want to show one thing
using another.

Notes are discussed in Chapter 6; packages are discussed in Chapter 12.

Most often, you will use dependencies in the context of classes to show that one class uses
another class as an argument in the signature of an operation; see Figure 5-2. This is very
much a using relationship—if the used class changes, the operation of the other class may be
affected, as well, because the used class may now present a different interface or behavior. In
the UML you can also create dependencies among many other things, especially notes and
packages.

Figure 5-2 Dependencies

FilmClip dependency
name
playOn(c : Channel)
start() -----#---> Channel
stop() 2
reset()

Different kinds of dependencies are discussed in Chapter 10; stereotypes are discussed in
Chapter 6.

Note

A dependency can have a name, although names are rarely needed unless you have
a model with many dependencies and you need to refer to or distinguish among
dependencies. More commonly, you'll use stereotypes to distinguish different flavors of
dependencies.

Generalization

A generalization is a relationship between a general thing (called the superclass or parent)and a
more specific kind of that thing (called the subclass or child). Generalization is sometimes called
an "is-a-kind-of" relationship: one thing (like the class Bay W ndow) is-a-kind-of a more general
thing (for example, the class W ndow). Generalization means that objects of the child may be
used anywhere the parent may appear, but not the reverse. In other words, generalization means
that the child is substitutable for the parent. A child inherits the properties of its parents, especially
their attributes and operations. Often— but not always—the child has attributes and operations in
addition to those found in its parents. An operation of a child that has the same signature as an
operation in a parent overrides the operation of the parent; this is known as polymorphism.
Graphically, generalization is rendered as a solid directed line with a large open arrowhead,
pointing to the parent, as shown in Figure 5-3. Use generalizations when you want to show
parent/child relationships.

Figure 5-3 Generalization

base class
———Tre Shape
origin
— move()
generalizafion resize()
/ display()()
/ \iam
e o
—
Reclangle Circle Folygon
corner : Point radius : Floal points : List
display
Square il s
f',r leaf class

A class may have zero, one, or more parents. A class that has no parents and one or more
children is called a root class or a base class. A class that has no children is called a leaf class. A
class that has exactly one parent is said to use single inheritance; a class with more than one
parent is said to use multiple inheritance.

Packages are discussed in Chapter 12.
Most often, you will use generalizations among classes and interfaces to show inheritance
relationships. In the UML, you can also create generalizations among other things—maost notably,
packages.

Note

A generalization can have a name, although names are rarely needed unless you

have a model with many generalizations and you need to refer to or discriminate
among generalizations.

Association

Associations and dependencies (but not generalization relationships) may be reflective, as
discussed in Chapter 10.

An association is a structural relationship that specifies that objects of one thing are connected to
objects of another. Given an association connecting two classes, you can navigate from an object

of one class to an object of the other class, and vice versa. It's quite legal to have both ends of an
association circle back to the same class. This means that, given an object of the class, you can
link to other objects of the same class. An association that connects exactly two classes is called
a binary association. Although it's not as common, you can have associations that connect more
than two classes; these are called n-ary associations. Graphically, an association is rendered as
a solid line connecting the same or different classes. Use associations when you want to show
structural relationships.

Beyond this basic form, there are four adornments that apply to associations.
Don't confuse name direction with association navigation, as discussed in Chapter 10.
Name

An association can have a name, and you use that name to describe the nature of the
relationship. So that there is no ambiguity about its meaning, you can give a direction to the name
by providing a direction triangle that points in the direction you intend to read the name, as shown

in Figure 5-4.
Figure 5-4 Association Names

name direction
name

\-Works forp

Person Company

association
Note

Although an association may have a name, you typically don't need to include one if
you explicitly provide role names for the association, or if you have a model with many
associations and you need to refer to or distinguish among associations. This is
especially true when you have more than one association connecting the same
classes.

Roles are related to the semantics of interfaces, as discussed in Chapter 11.
Role

When a class participates in an association, it has a specific role that it plays in that relationship;
arole is just the face the class at the near end of the association presents to the class at the
other end of the association. You can explicitly name the role a class plays in an association. In
Figure 5-5, a Per son playing the role of enpl oyee is associated with a Conpany playing the
role of enpl oyer.

Figure 5-5 Roles

association

Person Company
employee employer

role name
Note

The same class can play the same or different roles in other associations.

An instance of an association is called a link, as discussed in Chapter 15.
Multiplicity

An association represents a structural relationship among objects. In many modeling situations,
it's important for you to state how many objects may be connected across an instance of an
association. This "how many" is called the multiplicity of an association's role, and is written as an
expression that evaluates to a range of values or an explicit value as in Figure 5-6. When you
state a multiplicity at one end of an association, you are specifying that, for each object of the
class at the opposite end, there must be that many objects at the near end. You can show a
multiplicity of exactly one (1), zero or one (0. . 1), many (0. . *), or one or more (1. . *). You can
even state an exact number (for example, 3).

Figure 5-6 Multiplicity
multiplicity

Tar® &

Person Company
employee employer

association
Note

You can specify more complex multiplicities by using a list, suchas 0. . 1, 3. .4,
6. . *, which would mean "any number of objects other than 2 or 5. "

Aggregation has a number of important variations, as discussed in Chapter 10.
Aggregation

A plain association between two classes represents a structural relationship between peers,
meaning that both classes are conceptually at the same level, no one more important than the
other. Sometimes, you will want to model a "whole/part" relationship, in which one class
represents a larger thing (the "whole"), which consists of smaller things (the "parts"). This kind of
relationship is called aggregation, which represents a "has-a" relationship, meaning that an object
of the whole has objects of the part. Aggregation is really just a special kind of association and is
specified by adorning a plain association with an open diamond at the whole end, as shown in

Figure 5-7.

Figure 5-7 Aggregation

/,.——4. Company
whole 1 <>

aggregation

part X

\

eDepartment

Note

The meaning of this simple form of aggregation is entirely conceptual. The open
diamond distinguishes the "whole" from the "part," no more, no less. This means that
simple aggregation does not change the meaning of navigation across the association
between the whole and its parts, nor does it link the lifetimes of the whole and its parts.

Other Features

Advanced relationship concepts are discussed in Chapter 10.

Plain, unadorned dependencies, generalizations, and associations with names, multiplicities, and
roles are the most common features you'll need when creating abstractions. In fact, for most of
the models you build, the basic form of these three relationships will be all you need to convey
the most important semantics of your relationships. Sometimes, however, you'll need to visualize
or specify other features, such as composite aggregation, navigation, discriminants, association
classes, and special kinds of dependencies and generalizations. These and many other features
can be expressed in the UML, but they are treated as advanced concepts.

Class diagrams are discussed in Chapter 8.

Dependencies, generalization, and associations are all static things defined at the level of
classes. In the UML, these relationships are usually visualized in class diagrams.

Links are discussed in Chapter 15; transitions are discussed in Chapter 21.
When you start modeling at the object level, and especially when you start working with dynamic
collaborations of these objects, you'll encounter two other kinds of relationships—Iinks (which are

instances of associations representing connections among objects across which messages may
be sent) and transitions (which are connections among states in a state machine).

Common Modeling Techniques

Modeling Simple Dependencies

The most common kind of dependency relationship is the connection between a class that only
uses another class as a parameter to an operation.

To model this using relationship,

Create a dependency pointing from the class with the operation to the class used as a
parameter in the operation.

For example, Figure 5-8 shows a set of classes drawn from a system that manages the
assignment of students and instructors to courses in a university. This figure shows a
dependency from Cour seSchedul e to Cour se, because Cour se is used in both the add and
r enove operations of Cour seSchedul e.

Figure 5-8 Dependency Relationships

CourseSchedule

add(c:Course) [~~~ 777" >| Course
remove(c : Course)

/N

|
«friend» II
I
1

Iterator

If you provide the full signature of the operation as in this figure, you don't normally need to show
the dependency, as well, because the use of the class is already explicit in the signature.
However, you'll want to show this dependency sometimes, especially if you've elided operation
signatures or if your model shows other relationships to the used class.

Other relationship stereotypes are discussed in Chapter 10.

This figure shows one other dependency, this one not involving classes in operations but rather
modeling a common C++ idiom. The dependency from | t er at or shows thatthe | t er at or
uses the Cour seSchedul e; the Cour seSchedul e knows nothing about the | t er at or. The
dependency is marked with a stereotype, which specifies that this is not a plain dependency, but,
rather, it represents a friend, as in C++.

Modeling Single Inheritance

In modeling the vocabulary of your system, you will often run across classes that are structurally
or behaviorally similar to others. You could model each of these as distinct and unrelated
abstractions. A better way would be to extract any common structural and behavioral features
and place them in more-general classes from which the specialized ones inherit.

To model inheritance relationships,

Given a set of classes, look for responsibilities, attributes, and operations that are
common to two or more classes.

Elevate these common responsibilities, attributes, and operations to a more general
class. If necessary, create a new class to which you can assign these elements (but be
careful about introducing too many levels).

Specify that the more-specific classes inherit from the more-general class by placing a
generalization relationship that is drawn from each specialized class to its more-general
parent.

For example, Figure 5-9 shows a set of classes drawn from a trading application. You will find a
generalization relationship from four classes— CashAccount , St ock, Bond, and Pr oper t y—to
the more-general class named Security. Security isthe parent, and CashAccount, St ock,
Bond, and Pr oper t y are all children. Each of these specialized children is a kind of Security.
You'll notice that Secur i t vy includes two operations: pr esent Val ue and hi st ory. Because
Securi ty is their parent, CashAccount , St ock, Bond, and Pr oper t y all inherit these two
operations, and for that matter, any other attributes and operations of Secur i t y that may be
elided in this figure.

Figure 5-9 Inheritance Relationships

Security

presentValue()
history(}

T

CashAccount Stock Bond Property
interestRate assessmenis
resentValue tval
presentValue() 4 0 Emserivaped presentValue()
SmallCapStock LargeCapStock

Abstract classes and operations are discussed in Chapter 9.

You may notice that the names Secur i ty and pr esent Val ue are written a bit differently than
others. There's a reason for this. When you build hierarchies as in the preceding figure, you often
encounter nonleaf classes that are incomplete or are simply ones for which you don't want there
to be any objects. Such classes are called abstract. You can specify a class as abstract in the
UML by writing its name in italics, such as for the class Securi t y. This convention applies to
operations such pr esent Val ue and means that the given operation provides a signature but is
otherwise incomplete and so must be implemented by some method at a lower level of
abstraction. In fact, as the figure shows, all four of the immediate children of Securi ty are
concrete (meaning that they are nonabstract) and also provide a concrete implementation of the
operation pr esent Val ue.

Your generalization/specialization hierarchies don't have to be limited to only two levels. In fact,
as the figure shows, it is common to have more than two layers of inheritance. Sal | CapSt ock
and Lar geCapSt ock are both children of St ock, which, in turn, is a child of Security.
Securi ty is therefore a base class because it has no parents. Snal | CapSt ock and

Lar geCapSt ock are both leaf classes because they have no children. St ock has a parent as
well as children, and so it is neither a root nor a leaf class.

Multiple inheritance is discussed in Chapter 10.

Although it is not shown here, you can also create classes that have more than one parent. This
is called multiple inheritance and means that the given class has all the attributes, operations,
and associations of all its parents.

Of course, there can be no cycles in an inheritance lattice; a given class cannot be its own parent.
Modeling Structural Relationships

When you model with dependencies or generalization relationships, you are modeling classes
that represent different levels of importance or different levels of abstraction. Given a dependency

between two classes, one class depends on another but the other class has no knowledge of the
one. Given a generalization relationship between two classes, the child inherits from its parent but
the parent has no specific knowledge of its children. In short, dependency and generalization
relationships are one-sided.

Associations are, by default, bidirectional; you can limit their direction, as discussed in Chapter
10.

When you model with association relationships, you are modeling classes that are peers of one
another. Given an association between two classes, both rely on the other in some way, and you
can navigate in either direction. Whereas dependency is a using relationship and generalization is
an is-a-kind-of relationship, an association specifies a structural path across which objects of the
classes interact.

To model structural relationships,

For each pair of classes, if you need to navigate from objects of one to objects of
another, specify an association between the two. This is a data-driven view of
associations.

For each pair of classes, if objects of one class need to interact with objects of the other
class other than as parameters to an operation, specify an association between the two.
This is more of a behavior-driven view of associations.

For each of these associations, specify a multiplicity (especially when the multiplicity is
not *, which is the default), as well as role names (especially if it helps to explain the
model).

If one of the classes in an association is structurally or organizationally a whole compared
with the classes at the other end that look like parts, mark this as an aggregation by
adorning the association at the end near the whole.

Use cases are discussed in Chapter 16.

How do you know when objects of a given class must interact with objects of another class? The
answer is that CRC cards and use case analysis help tremendously by forcing you to consider
structural and behavioral scenarios. Where you find that two or more classes interact, specify an
association.

Figure 5-10 shows a set of classes drawn from an information system for a school. Starting at
the bottom left of this diagram, you will find the classes named St udent , Cour se, and

I nstructor. There's an association between St udent and Cour se, specifying that students
attend courses. Furthermore, every student may attend any number of courses and every course
may have any number of students.

Figure 5-10 Structural Relationships

0.1

] has
School @p————— Department [~
1 : v,] A
1. | - 2
A A
member assignedTo
0..1
.] T chairperson
| attends -« teaches
I Student b o Course - r Instructor

Similarly, you'll find an association between Cour se and | nstruct or, specifying that
instructors teach courses. For every course there is at least one instructor and every instructor
may teach zero or more courses.

The aggregation relationship between School and Depart nent is composite aggregation, as
discussed in Chapter 10.

The relationships between School and the classes St udent and Depar t nent are a bit
different. Here you'll see aggregation relationships. A school has zero or more students, each
student may be a registered member of one or more schools, a school has one or more
departments, each department belongs to exactly one school. You could leave off the
aggregation adornments and use plain associations, but by specifying that School is a whole
and that St udent and Depart nent are some of its parts, you make clear which one is
organizationally superior to the other. Thus, schools are somewhat defined by the students and
departments they have. Similarly, students and departments don't really stand alone outside the
school to which they belong. Rather, they get some of their identity from their school.

You'll also see that there are two associations between Depart nent and | nstruct or. One of
these associations specifies that every instructor is assigned to one or more departments and
that each department has one or more instructors. This is modeled as an aggregation because
organizationally, departments are at a higher level in the school's structure than are instructors.
The other association specifies that for every department, there is exactly one instructor who is
the department chair. The way this model is specified, an instructor can be the chair of no more
than one department and some instructors are not chairs of any department.

Note

You may take exception to this model because it might not reflect your reality. Your
school might not have departments. You might have chairs who are not instructors or
you might even have students who are also instructors. That doesn't mean that the

model here is wrong, it's just different. You cannot model in isolation, and every model
like this depends on how you intend to use these models.

Hints and Tips
When you model relationships in the UML,
Use dependencies only when the relationship you are modeling is not structural.

Use generalization only when you have an "is-a-kind-of" relationship; multiple inheritance
can often be replaced with aggregation.

Beware of introducing cyclical generalization relationships.

Keep your generalization relationships generally balanced; inheritance latices should not
be too deep (more than five levels or so should be questioned) nor too wide (instead,
look for the possibility of intermediate abstract classes).

Use associations primarily where there are structural relationships among objects.
When you draw a relationship in the UML,

Use either rectilinear or oblique lines consistently. Rectilinear lines give a visual cue that
emphasizes the connections among related things all pointing to one common thing.
Oblique lines are often more space-efficient in complex diagrams. Using both kinds of
lines in the same diagram is useful for drawing attention to different groups of
relationships.

Avoid lines that cross.

Show only those relationships that are necessary to understand a particular grouping of
things. Superfluous relationships (especially redundant associations) should be elided.

Chapter 6. Common Mechanisms

In this chapter
Notes
Stereotypes, tagged values, and constraints
Modeling comments
Modeling new building blocks
Modeling new properties
Modeling new semantics
Extending the UML
These common mechanisms are discussed in Chapter 2.

The UML is made simpler by the presence of four common mechanisms that apply consistently
throughout the language: specifications, adornments, common divisions, and extensibility
mechanisms. This chapter explains the use of two of these common mechanisms, adornments
and extensibility mechanisms.

Notes are the most important kind of adornment that stands alone. A note is a graphical symbol
for rendering constraints or comments attached to an element or a collection of elements. You
use notes to attach information to a model, such as requirements, observations, reviews, and
explanations.

The UML's extensibility mechanisms permit you to extend the language in controlled ways. These
mechanisms include stereotypes, tagged values, and constraints. A stereotype extends the
vocabulary of the UML, allowing you to create new kinds of building blocks that are derived from
existing ones but that are specific to your problem. A tagged value extends the properties of a
UML building block, allowing you to create new information in that element's specification. A
constraint extends the semantics of a UML building block, allowing you to add new rules or
modify existing ones. You use these mechanisms to tailor the UML to the specific needs of your
domain and your development culture.

Getting Started

Sometimes, you just have to color outside the lines. For example, at a job site, an architect might
scribble a few notes on the building's blueprints in order to communicate a subtle detail to the
construction workers. In a recording studio, a composer might invent a new musical notation to
represent some unusual effect she wants from a keyboard player. In both cases, there already
exist well-defined languages—the language of structural blueprints and the language of musical
notation—but, sometimes, you have to bend or extend those languages in controlled ways to
communicate your intent.

Modeling is all about communication. The UML already gives you all the tools you need to
visualize, specify, construct, and document the artifacts of a wide range of software-intensive
systems. However, you might find circumstances in which you'll want to bend or extend the UML.
This happens to human languages all the time (that's why new dictionaries get published every
year), because no static language can ever be sufficient to cover everything you'll want to
communicate for all time. When using a modeling language such as the UML, remember that you
are doing so to communicate, and that means you'll want to stick to the core language unless
there's compelling reason to deviate. When you find yourself needing to color outside the lines,
you should do so only in controlled ways. Otherwise, you will make it impossible for anyone to
understand what you've done.

Notes are the mechanism provided by the UML to let you capture arbitrary comments and
constraints to help illuminate the models you've created. Notes may represent artifacts that play
an important role in the software development life cycle, such as requirements, or they may
simply represent free-form observations, reviews, or explanations.

The UML provides a graphical representation for comments and constraints, called a note, as
Figure 6-1 shows. This notation permits you to visualize a comment directly. In conjunction with
the proper tools, notes also give you a placeholder to link to or embed other documents.

Figure 6-1 Notes

note

Consider the use
of the broker design
pattern here. egb 12/11/97

Stereotypes, tagged values, and constraints are the mechanisms provided by the UML to let you
add new building blocks, create new properties, and specify new semantics. For example, if you
are modeling a network, you might want to have symbols for routers and hubs; you can use
stereotyped nodes to make these things appear as primitive building blocks. Similarly, if you are
part of your project's release team, responsible for assembling, testing, and then deploying
releases, you might want to keep track of the version number and test results for each major
subsystem. You can use tagged values to add this information to your models. Finally, if you are
modeling hard real time systems, you might want to adorn your models with information about
time budgets and deadlines; you can use constraints to capture these timing requirements.

The UML provides a textual representation for stereotypes, tagged values, and constraints, as
Figure 6-2 shows. Stereotypes also let you introduce new graphical symbols so that you can
provide visual cues to your models that speak the language of your domain and your
development culture.

Figure 6-2 Stereotypes, Tagged Values, and Constraints
5‘9”5“!'—"{_ |

——a «subsyslem:» tagged values

Billing B

{version = 3. 2)@—m"1_]

stereotyped node

stereolyped node

{> 10M/Sec line}

Building 1 Hub

Server constraint

Terms and Concepts

A note is a graphical symbol for rendering constraints or comments attached to an element or a
collection of elements. Graphically, a note is rendered as a rectangle with a dog-eared corner,
together with a textual or graphical comment.

A stereotype is an extension of the vocabulary of the UML, allowing you to create new kinds of
building blocks similar to existing ones but specific to your problem. Graphically, a stereotype is
rendered as a name enclosed by guillemets and placed above the name of another element. As
an option, the stereotyped element may be rendered by using a new icon associated with that
stereotype.

A tagged value is an extension of the properties of a UML element, allowing you to create new
information in that element's specification. Graphically, a tagged value is rendered as a string
enclosed by brackets and placed below the name of another element.

A constraint is an extension of the semantics of a UML element, allowing you to add new rules or
to modify existing ones. Graphically, a constraint is rendered as a string enclosed by brackets
and placed near the associated element or connected to that element or elements by
dependency relationships. As an alternative, you can render a constraint in a note.

Notes

A note that renders a comment has no semantic impact, meaning that its contents do not alter the
meaning of the model to which it is attached. This is why notes are used to specify things like
requirements, observations, reviews, and explanations, in addition to rendering constraints.

Notes may be attached to more than one element by usingdependencies, as discussed in
Chapter 5.

A note may contain any combination of text or graphics. If your implementation allows it, you can
put a live URL inside a note, or even link to or embed another document. In this way, you can use
the UML to organize all the artifacts you might generate or use during development, as Figure 6-
3 illustrates.

Figure 6-3 Notes

simple text
Publish this component | ™\
in the project repository

after the next design review. embedded URL
agb 1598 See http/fwww.gamelan.com

for an example of this applet,

link to document

= | See encryptdoc for
e delails about this algorithm.

Note

The UML specifies one standard stereotype that applies to notes—requirements. This
stereotype names a common category of notes—those used to state some
responsibility or obligation.

Other Adornments

The basic notation for an association, along with some of its adornments, are discussed in
Chapters 5 and 10.

Adornments are textual or graphical items that are added to an element's basic notation and are
used to visualize details from the element's specification. For example, the basic notation for an
association is a line, but this may be adorned with such details as the role and multiplicity of each
end. In using the UML, the general rule to follow is this: Start with the basic notation for each
element and then add other adornments only as they are necessary to convey specific
information that is important to your model.

Most adornments are rendered by placing text near the element of interest or by adding a graphic
symbol to the basic notation. However, sometimes you'll want to adorn an element with more
detail than can be accommodated by simple text or graphics. In the case of such things as
classes, components, and nodes, you can add an extra compartment below the usual
compartments to provide this information, as Figure 6-4 shows.

Figure 6-4 Extra Compartments

Client
anonymous compartment

bill.exe
report.exe

contacts.exe

Transaction

addAction()
removeAction()
perform()

rollBack() named compartment
Exceptions ._/

emptyTransaction

noSuchAction

resourcelLocked

Note

Unless it's obvious by its content, it's good practice to name any extra compartment
explicitly so that there is no confusion about its meaning. It's also good practice to use
extra compartments sparingly, because if overused, they make diagrams cluttered.

Stereotypes
These four basic elements of the UML are discussed in Chapter 2.

The UML provides a language for structural things, behavioral things, grouping things, and
notational things. These four basic kinds of things address the overwhelming majority of the
systems you'll need to model. However, sometimes you'll want to introduce new things that speak
the vocabulary of your domain and look like primitive building blocks.

TheRational Unified Process is summarized in Appendix C.

A stereotype is not the same as a parent class in a parent/child generalization relationship.
Rather, you can think of a stereotype as a metatype, because each one creates the equivalent of
a new class in the UML's metamodel. For example, if you are modeling a business process, you'll
want to introduce things like workers, documents, and policies. Similarly, if you are following a
development process, such as the Rational Unified Process, you'll want to model using boundary,
control, and entity classes. This is where the real value of stereotypes comes in. When you
stereotype an element such as a node or a class, you are in effect extending the UML by creating
a new building block just like an existing one but with its own special properties (each stereotype
may provide its own set of tagged values), semantics (each stereotype may provide its own
constraints), and notation (each stereotype may provide its own icon).

In its simplest form, a stereotype is rendered as a name enclosed by guillemets (for example,
«nane») and placed above the name of another element. As a visual cue, you may define an
icon for the stereotype and render that icon to the right of the name (if you are using the basic
notation for the element) or use that icon as the basic symbol for the stereotyped item. All three of
these approaches are illustrated in Figure 6-5.

Figure 6-5 Stereotypes
named stereotype

\ «metaclassy

ModelElement

named stereotype with icon

«exceptions»
Underflow & +_/

slereotyped element as icon

o R

HumiditySensor
The UML's defined stereotypes are discussed in Appendix B.

Note

When you define an icon for a stereotype, consider using color as an accent to provide
a subtle visual cue (but use color sparingly). The UML lets you use any shape for such
icons, and if your implementation permits it, these icons might appear as primitive
tools so that users who create UML diagrams will have a palette of things that look
basic to them and speak the vocabulary of their domain.

Tagged Values

Every thing in the UML has its own set of properties: classes have names, attributes, and
operations; associations have names and two or more ends (each with its own properties); and
so on. With stereotypes, you can add new things to the UML; with tagged values, you can add
new properties.

Attributes are discussed in Chapters 4 and 9.

You can define tags for existing elements of the UML, or you can define tags that apply to
individual stereotypes so that everything with that stereotype has that tagged value. A tagged
value is not the same as a class attribute. Rather, you can think of a tagged value as metadata
because its value applies to the element itself, not its instances. For example, as Figure 6-6
shows, you might want to specify the number of processors installed on each kind of node in a
deployment diagram, or you might want to require that every component be stereotyped as a
library if it is intended to be deployed on a client or a server.

Figure 6-6 Tagged Values

tagged value

|
Server _-__i alibrary» I_ll value of tag
~—& {processors = 3) | ' frans.dll /

—— {serverCnly) - =

In its simplest form, a tagged value is rendered as a string enclosed by brackets and placed
below the name of another element. That string includes a name (the tag), a separator (the
symbol =), and a value (of the tag). You can specify just the value if its meaning is unambiguous,
such as when the value is the name of enumeration.

The UML's The UML's defined tagged values are discussed in Appendix B.
Note

One of the most common uses of tagged values is to specify properties that are
relevant to code generation or configuration management. For example, you can use
tagged values to specify the programming language to which you map a particular
class. Similarly, you can use tagged values to specify the author and version of a
component.

Constraints

Time and space constraints, commonly used when modeling real time systems, are discussed in
Chapter 23.

Everything in the UML has its own semantics. Generalization implies the Liskov substitution
principle, and multiple associations connected to one class denote distinct relationships. With
constraints, you can add new semantics or change existing rules. A constraint specifies
conditions that must be held true for the model to be well-formed. For example, as Figure 6-7
shows, you might want to specify that, across a given association, communication is encrypted.
Similarly, you might want to specify that among a set of associations, only one is manifest at a
time.

Figure 6-7 Constraint

simple constraint

Portfolio
Corporation
{secure} .)
| constraint across multiple elements
BankAccount L1 TN
|
Person
gender : {female, male} 5.4
wife

0.1

formal constraint using OCL husband
{self.wife.gender = female and

self.husband.gender = male}

The UML's defined constraints are discussed in Appendix B.
Note

Constraints may be written as free-form text. If you want to specify your semantics
more precisely, you can use the UML's Object Constraint Language (OCL), described
further in The The Unified Modeling Language Reference Manual.

Constraints may be attached to more than one element by using dependencies, as discussed in
Chapter 5.

A constraint is rendered as a string enclosed by brackets and placed near the associated
element. This notation is also used as an adornment to the basic notation of an element to
visualize parts of an element's specification that have no graphical cue. For example, some
properties of associations (order and changeability) are rendered using constraint notation.

Standard Elements

The UML's standard elements are summarized in Appendix B; classifiers are discussed in
Chapter 9.

The UML defines a number of standard stereotypes for classifiers, components, relationships,
and other modeling elements. There is one standard stereotype, mainly of interest to tool
builders, that lets you model stereotypes themselves.

. Specifies that the classifier is a stereotype that may be applied to other
stereotype |elements

You'll use this stereotype when you want to explicitly model the stereotypes you've defined for
your project.

The UML also specifies one standard tagged value that applies to all modeling elements.

. Specifies a comment, description, or explanation of the element to which it
document at i on |is attached

You'll use this tagged value when you want to attach a comment directly to the specification of an
element, such as a class.

Common Modeling Techniques

Modeling Comments

The most common purpose for which you'll use notes is to write down free-form observations,
reviews, or explanations. By putting these comments directly in your models, your models can
become a common repository for all the disparate artifacts you'll create during development. You
can even use notes to visualize requirements and show how they tie explicitly to the parts of your
model.

To model a comment,

Put your comment as text in a note and place it adjacent to the element to which it refers.
You can show a more explicit relationship by connecting a note to its elements using a
dependency relationship.

Remember that you can hide or make visible the elements of your model as you see fit.
This means that you don't have to make your comments visible everywhere the elements
to which it is attached are visible. Rather, expose your comments in your diagrams only
insofar as you need to communicate that information in that context.

If your comment is lengthy or involves something richer than plain text, consider putting
your comment in an external document and linking or embedding that document in a note
attached to your model.

As your model evolves, keep those comments that record significant decisions that
cannot be inferred from the model itself, and—unless they are of historic interest—
discard the others.

Simplegeneralization is discussed in Chapter 5; advanced forms of generalization are discussed
in Chapter 10.

For example, Figure 6-8 shows a model that's a work in progress of a class hierarchy, showing
some requirements that shape the model, as well as some notes from a design review.

Figure 6-8 Modeling Comments

arequirements Security
Shall conform to corporate
framework for fransaction logging -,
in compliance with federal law.

Mary: add two intermediate
esanivals
Py ue() abstract classes to

an dislinguish realintangible

ﬁg securities. walkthrough on 1271797

i

CashAccount Stock Bond Property
interestRate assassments
—— | present\Valus() preseniValue)
presenfValual) - L L i | _ +presentValue()

- “ - "] e -
= . i L

=] See policy8-5-96.doc for
details about these algonthms

In this example, most of the comments are simple text (such as the note to Mary), but one of
them (the note at the bottom of the diagram) provides a hyperlink to another document.

Modeling New Building Blocks

The UML's building blocks—classes, interfaces, collaborations, components, nodes,
associations, and so on—are generic enough to address most of the things you'll want to model.
However, if you want to extend your modeling vocabulary or give distinctive visual cues to certain
kinds of abstractions that often appear in your domain, you need to use stereotypes.

To model new building blocks,

Make sure there's not already a way to express what you want by using basic UML. If you
have a common modeling problem, chances are there's already some standard
stereotype that will do what you want.

Building hierarchies ofstereotypes is discussed in Chapter 10.

If you're convinced there's no other way to express these semantics, identify the primitive
thing in the UML that's most like what you want to model (for example, class, interface,
component, node, association, and so on) and define a new stereotype for that thing.
Remember that you can define hierarchies of stereotypes so that you can have general
kinds of stereotypes along with their specializations (but as with any hierarchy, use this

sparingly).
Specify the common properties and semantics that go beyond the basic element being
stereotyped by defining a set of tagged values and constraints for the stereotype.

If you want these stereotype elements to have a distinctive visual cue, define a new icon
for the stereotype.

Instances are discussed in Chapter 13; roles are discussed in Chapter 11; activity diagrams
are discussed in Chapter 19.

For example, suppose you are using activity diagrams to model a business process involving the
flow of coaches and teams through a sporting event. In this context, it would make sense to
visually distinguish coaches and teams from one another and from the other things in this

domain, such as events and divisions. As Figure 6-9 shows, there are two things that stand
out—Coach objects and Teamobjects. These are not just plain kinds of classes. Rather, they are
now primitive building blocks that you can use in this context. You can create these new building
blocks by defining a coach and team stereotype and applying them to UML's classes. In this
figure, the anonymous instances called : Coach and : Team(the latter shown in various states—
namely, unregi st ered, regi st ered, and f i ni shed) appear using the icons associated with
these stereotypes.

Figure 6-9 Modeling New Building Blocks.

Registration Competition
-Coach ™~
X Regis D N
5 aegister leam
M N~ / ; Team
b Lunregu'slered]
5 ".ullr 4 ¥

B = f—-‘-]l e _.;.: Praclice

ay fees) o : 7 I
£ ,-"
\ 2 vV

- o \ Compele

Gelevent | o3 4
malerials / “Taari
[registered]

/
Relum event Pl
\ materials N I{'J!
: Team

.

[finished]
Modeling New Properties

The basic properties of the UML's building blocks—attributes and operations for classes, the
contents of packages, and so on—are generic enough to address most of the things you'll want to
model. However, if you want to extend the properties of these basic building blocks (or the new
building blocks you create using stereotypes), you need to use tagged values.

To model new properties,

First, make sure there's not already a way to express what you want by using basic UML.
If you have a common modeling problem, chances are that there's already some
standard tagged value that will do what you want.

If you're convinced there's no other way to express these semantics, add this new
property to an individual element or a stereotype. The rules of generalization apply—
tagged values defined for one kind of element apply to its children.

Subsystems are discussed in Chapter 31.

For example, suppose you want to tie the models you create to your project's configuration
management system. Among other things, this means keeping track of the version number,
current check in/check out status, and perhaps even the creation and modification dates of each
subsystem. Because this is process-specific information, it is not a basic part of the UML,
although you can add this information as tagged values. Furthermore, this information is not just a
class attribute either. A subsystem's version number is part of its metadata, not part of the model.

Figure 6-10 shows four subsystems, each of which has been extended to include its version
number and status. In the case of the Bi | | i ng subsystem, one other tagged value is shown—
the person who has currently checked out the subsystem.

Figure 6-10 Modeling New Properties

i f

«subsystem»

FieldAccess
{version=2.5
status = checkedin}

7
!
/!
!

7
| e R
« subgyjstern» «subsystemn»
_Billing AccountsPayable
{version = 3.2 {version = 3.2.1
status = checkedOut status = checkedin}
by = eghb}
LY e
3 -
\ - -
i - -
\ Fa
L - -~ i
|] L7
«subsystem»
WorldCurrency

{version =7.5
status = checkedin }

Note

The values of tags such as ver si on and st at us are things that can be set by tools.
Rather than setting these values in your model by hand, you can use a development

environment that integrates your configuration management tools with your modeling
tools to maintain these values for you.

Modeling New Semantics

When you create a model using the UML, you work within the rules the UML lays down. That's a
good thing, because it means that you can communicate your intent without ambiguity to anyone
else who knows how to read the UML. However, if you find yourself needing to express new
semantics about which the UML is silent or that you need to modify the UML's rules, then you
need to write a constraint.

To model new semantics,

First, make sure there's not already a way to express what you want by using basic UML.
If you have a common modeling problem, chances are that there's already some
standard constraint that will do what you want.

If you're convinced there's no other way to express these semantics, write your new
semantics as text in a constraint and place it adjacent to the element to which it refers.
You can show a more explicit relationship by connecting a constraint to its elements
using a dependency relationship.

If you need to specify your semantics more precisely and formally, write your new
semantics using OCL.

For example, Figure 6-11 models a small part of a corporate human resources system.

Figure 6-11 Modeling New Semantics

Department

* *

{subset}

member | 1..* 1 | manager

Person

This diagram shows that each Per son may be a member of zero or more Depar t nent s and
that each Depar t nent must have at least one Per son as a member. This diagram goes on to
indicate that each Depar t ment must have exactly one Per son as a manager and every Per son
may be the manager of zero or more Depar t nent s. All of these semantics can be expressed
using simple UML. However, to assert that a manager must also be a member of the department
is something that cuts across multiple associations and cannot be expressed using simple UML.
To state this invariant, you have to write a constraint that shows the manager as a subset of the

members of the Department, connecting the two associations and the constraint by a
dependency from the subset to the superset.

Hints and Tips
When you adorn a model with notes,

Use notes only for those requirements, observations, reviews, and explanations that you
can't express simply or meaningfully using existing features of the UML.

Use notes as a kind of electronic sticky note, to keep track of your work in progress.
When you draw notes,

Don't clutter your models with large blocks of comments. Rather, if you really need a long

comment, use notes as a placeholder to link to or embed a document that contains the

full comment.

When you extend a model with stereotypes, tagged values, or constraints,

Standardize on a small set of stereotypes, tagged values, and constraints to use on your
project, and avoid letting individual developers create lots of new extensions.

Chose short, meaningful names for your stereotypes and tagged values.

Where precision can be relaxed, use free-form text for specifying constraints. If you need
more rigor, use the OCL to write constraint expressions.

When you draw a stereotype, tagged value, or constraint,
Use graphical stereotypes sparingly. You can totally change the basic notation of the
UML with stereotypes, but in so doing, you'll make it impossible for anyone else to
understand your models.
Consider using simple color or shading for graphical stereotypes, as well as more

complicated icons. Simple notations are generally the best, and even the most subtle
visual cues can go a long way in communicating meaning.

Chapter 7. Diagrams

In this chapter
Diagrams, views, and models
Modeling different views of a system
Modeling different levels of abstraction
Modeling complex views
Organizing diagrams and other artifacts
Modeling is discussed in Chapter 1.

When you model something, you create a simplification of reality so that you can better
understand the system you are developing. Using the UML, you build your models from basic

building blocks, such as classes, interfaces, collaborations, components, nodes, dependencies,
generalizations, and associations.

Diagrams are the means by which you view these building blocks. A diagram is a graphical
presentation of a set of elements, most often rendered as a connected graph of vertices (things)
and arcs (relationships). You use diagrams to visualize your system from different perspectives.
Because no complex system can be understood in its entirety from only one perspective, the
UML defines a number of diagrams so that you can focus on different aspects of your system
independently.

Good diagrams make the system you are developing understandable and approachable.
Choosing the right set of diagrams to model your system forces you to ask the right questions
about your system and helps to illuminate the implications of your decisions.

Getting Started

When you work with an architect to design a house, you start with three things: a list of wants
(such as "I want a house with three bedrooms" and "l want to pay no more than x"), a few simple
sketches or pictures from other houses representing some of its key features (such as a picture of
an entry with a circular staircase), and some general idea of style (such as "We'd like a French
country look with hints of California coastal"). The job of the architect is to take these incomplete,
ever-changing, and possibly contradictory requirements and turn them into a design.

To do that, the architect will probably start with a blueprint of a basic floor plan. This artifact
provides a vehicle for you and your architect to visualize the final house, to specify details, and to
document decisions. At each review, you'll want to make some changes, such as moving walls
about, rearranging rooms, placing windows and doors. Early on, these blueprints change often.
As the design matures and you become satisfied that you have a design that best fits all the
constraints of form, function, time, and money, these blueprints will stabilize to the point at which
they can be used for constructing your house. Even while your house is being built, you'l
probably change some of these diagrams and create some new ones, as well.

Along the way, you'll want to see views of the house other than just the floor plan. For example,
you'll want to see an elevation plan, showing the house from different sides. As you start
specifying details so that the job can be meaningfully costed out, your architect will need to create
electrical plans, plans for heating and ventilation, and plans for water and sewer connections. If
your design requires some unusual feature (such as a long, unsupported span over the
basement) or you have a feature that's important to you (such as the placement of a fireplace so
that you can put a home theater near it), you and your architect will want to create some sketches
that highlight those details.

The practice of creating diagrams to visualize systems from different perspectives is not limited to
the construction industry. You'll find this in every engineering discipline involving the creation of
complex systems, from civil engineering to aeronautical engineering, ship building,
manufacturing, and software.

The five views of anarchitecture are discussed in Chapter 2.

In the context of software, there are five complementary views that are most important in
visualizing, specifying, constructing, and documenting a software architecture: the use case view,
the design view, the process view, the implementation view, and the deployment view. Each of
these views involves structural modeling (modeling static things), as well as behavioral modeling
(modeling dynamic things). Together, these different views capture the most important decisions
about the system. Individually, each of these views lets you focus attention on one perspective of
the system so that you can reason about your decisions with clarity.

Modeling the architecture of a system is discussed in Chapter 31.

When you view a software system from any perspective using the UML, you use diagrams to
organize the elements of interest. The UML defines nine kinds of diagrams, which you can mix
and match to assemble each view. For example, the static aspects of a system's implementation
view might be visualized using component diagrams; the dynamic aspects of the same
implementation view might be visualized using interaction diagrams. Similarly, the static aspects
of a system's database might be visualized using class diagrams; its dynamic aspects might be
visualized using collaboration diagrams.

Of course, you are not limited to these nine diagrams. In the UML, these nine are defined
because they represent the most common packaging of viewed elements. To fit the needs of your
project or organization, you can create your own kinds of diagrams to view UML elements in
different ways.

This incremental and iterative process is summarized in Appendix C.

You'll use the UML's diagrams in two basic ways: to specify models from which you'll construct an
executable system (forward engineering) and to reconstruct models from parts of an executable
system (reverse engineering). Either way, just like a building architect, you'll tend to create your
diagrams incrementally (crafting them one piece at a time) and iteratively (repeating the process
of design a little, build a little).

Terms and Concepts
Systems, models, and views are discussed in Chapter 31.

A system is a collection of subsystems organized to accomplish a purpose and described by a set
of models, possibly from different viewpoints. A subsystem is a grouping of elements, of which
some constitute a specification of the behavior offered by the other contained elements. A model
is a semantically closed abstraction of a system, meaning that it represents a complete and self-
consistent simplification of reality, created in order to better understand the system. In the context
of architecture, a view is a projection into the organization and structure of a system's model,
focused on one aspect of that system. A diagram is the graphical presentation of a set of
elements, most often rendered as a connected graph of vertices (things) and arcs (relationships).

To put it another way, a system represents the thing you are developing, viewed from different
perspectives by different models, with those views presented in the form of diagrams.

A diagram is just a graphical projection into the elements that make up a system. For example,
you might have several hundred classes in the design of a corporate human resources system.
You could never visualize the structure or behavior of that system by staring at one large diagram
containing all these classes and all their relationships. Instead, you'd want to create several
diagrams, each focused on one view. For example, you might find one class diagram that
includes classes, such as Per son, Depar t nent , and O f | ce, assembled to construct a
database schema. You might find some of these same classes, along with other classes, in
another diagram that presents an API that's used by client applications. You'd likely see some of
these same classes mentioned in an interaction diagram, specifying the semantics of a
transaction that reassigns a Per son to a new Depar t nent .

As this example shows, the same thing in a system (such as the class Per son) may appear
multiple times in the same diagram or even in different diagrams. In each case, it's the same
thing. Each diagram provides a view into the elements that make up the system.

In modeling real systems, no matter what the problem domain, you'll find yourself creating the
same kinds of diagrams, because they represent common views into common models. Typically,
you'll view the static parts of a system using one of the four following diagrams.

1. Class diagram

2. Object diagram
3. Component diagram
4. Deployment diagram
You'll often use five additional diagrams to view the dynamic parts of a system.
1. Use case diagram
2. Sequence diagram
3. Collaboration diagram
4. Statechart diagram
5. Activity diagram
The UML defines these nine kinds of diagrams.
Packages are discussed in Chapter 12.

Every diagram you create will most likely be one of these nine or occasionally of another kind,
defined for your project or organization. Every diagram must have a name that's unique in its
context so that you can refer to a specific diagram and distinguish one from another. For anything
but the most trivial system, you'll want to organize your diagrams into packages.

You can project any combination of elements in the UML in the same diagram. For example, you
might show both classes and objects in the same diagram (a common thing to do), or you might
even show both classes and components in the same diagram (legal, but less common).
Although there's nothing that prevents you from placing wildly disparate kinds of modeling
elements in the same diagram, it's more common for you to have roughly the same kinds of
things in one diagram. In fact, the UML's defined diagrams are named after the element you'll
most often place in each. For example, if you want to visualize a set of classes and their
relationships, you'll use a class diagram. Similarly, if you want to visualize a set of components,
you'll use a component diagram.

Note

In practice, all the diagrams you'll create will be two-dimensional, meaning that they
are just flat graphs of vertices and arcs that are drawn on a sheet of paper, a
whiteboard, the back of an envelope, or on a computer display. The UML allows you to
create three-dimensional diagrams, meaning that they are graphs with depth, allowing
you to "swim" through a model. Some virtual reality research groups have already
demonstrated this advanced use of the UML.

Structural Diagrams

The UML's four structural diagrams exist to visualize, specify, construct, and document the static
aspects of a system. You can think of the static aspects of a system as representing its relatively
stable skeleton and scaffolding. Just as the static aspects of a house encompass the existence
and placement of such things as walls, doors, windows, pipes, wires, and vents, so too do the
static aspects of a software system encompass the existence and placement of such things as
classes, interfaces, collaborations, components, and nodes.

The UML's structural diagrams are roughly organized around the major groups of things you'll find
when modeling a system.

|1. Class diagram |Classes, interfaces, and collaborations
2. Object diagram Objects

3. Component diagram Components

|4. Deployment diagram |N0des

Class diagrams are discussed in Chapter 8.
Class Diagram

A class diagram shows a set of classes, interfaces, and collaborations and their relationships.
Class diagrams are the most common diagram found in modeling object-oriented systems. You
use class diagrams to illustrate the static design view of a system. Class diagrams that include
active classes are used to address the static process view of a system.

Object diagrams are discussed in Chapter 14
Object Diagram

An object diagram shows a set of objects and their relationships. You use object diagrams to
illustrate data structures, the static snapshots of instances of the things found in class diagrams.
Object diagrams address the static design view or static process view of a system just as do
class diagrams, but from the perspective of real or prototypical cases.

Component diagrams are discussed in Chapter 29.
Component Diagram

A component diagram shows a set of components and their relationships. You use component
diagrams to illustrate the static implementation view of a system. Component diagrams are
related to class diagrams in that a component typically maps to one or more classes, interfaces,
or collaborations.

Deployment diagrams are discussed in Chapter 30.
Deployment Diagram

A deployment diagram shows a set of nodes and their relationships. You use deployment
diagrams to illustrate the static deployment view of an architecture. Deployment diagrams are
related to component diagrams in that a node typically encloses one or more components.

Note

There are some common variants of these four diagrams, named after their primary
contents. For example, you might create a subsystem diagram to illustrate the
structural decomposition of a system into subsystems. A subsystem diagram is just a
class diagram that contains, primarily, subsystems.

Behavioral Diagrams

The UML's five behavioral diagrams are used to visualize, specify, construct, and document the
dynamic aspects of a system. You can think of the dynamic aspects of a system as representing

its changing parts. Just as the dynamic aspects of a house encompass airflow and traffic through
the rooms of a house, so too do the dynamic aspects of a software system encompass such
things as the flow of messages over time and the physical movement of components across a
network.

The UML's behavioral diagrams are roughly organized around the major ways you can model the
dynamics of a system.

1. Use case diagram |Organizes the behaviors of the system

2. Sequence diagram |Focused on the time ordering of messages

3. Collaboration Focused on the structural organization of objects that send and receive
diagram messages

4. Statechart diagram [Focused on the changing state of a system driven by events

5. Activity diagram Focused on the flow of control from activity to activity

Use case diagrams are discussed in Chapter 17.
Use Case Diagram

A use case diagram shows a set of use cases and actors (a special kind of class) and their
relationships. You apply use case diagrams to illustrate the static use case view of a system. Use
case diagrams are especially important in organizing and modeling the behaviors of a system.

The next two diagrams and the last two diagrams are semantically equivalent, which means that
you can model the dynamics of a system using one kind of behavioral diagram and then
transform it to another kind of diagram without loss of information. This lets you reason about
different aspects of your system's dynamics. For example, you might want first to create a
sequence diagram that illustrates the time ordering of messages and then turn that into a
collaboration diagram so that you can develop the structural relationships among the classes
whose objects participate in this collaboration (you can go from collaboration diagrams to
sequence diagrams, as well). Similarly, you might want to start with a statechart diagram to
illustrate the event-driven response of the system and then turn it into an activity diagram that
focuses on the flow of control (you can also go from activity diagrams to statechart diagrams).
The reason that the UML provides these semantically equivalent diagrams is that modeling the
dynamics of a system is just plain hard, and often you must attack a wicked problem from more
than one angle at the same time.

Interaction diagram is the collective name given to sequence diagrams and collaboration
diagrams. All sequence diagrams and collaborations are interaction diagrams, and an interaction
diagram is either a sequence diagram or a collaboration diagram.

Sequence diagrams are discussed in Chapter 18.
Sequence Diagram

A sequence diagram is an interaction diagram that emphasizes the time ordering of messages. A
sequence diagram shows a set of objects and the messages sent and received by those objects.
The objects are typically named or anonymous instances of classes, but may also represent
instances of other things, such as collaborations, components, and nodes. You use sequence
diagrams to illustrate the dynamic view of a system.

Collaboration diagrams are discussed in Chapter 18.
Collaboration Diagram

A collaboration diagram is an interaction diagram that emphasizes the structural organization of
the objects that send and receive messages. A collaboration diagram shows a set of objects,

links among those objects, and messages sent and received by those objects. The objects are
typically named or anonymous instances of classes, but may also represent instances of other
things, such as collaborations, components, and nodes. You use collaboration diagrams to
illustrate the dynamic view of a system.

Note

Sequence and collaboration diagrams are isomorphic, meaning that you can convert
from one to the other without loss of information.

Statechart diagrams are discussed in Chapter 24.
Statechart Diagram

A statechart diagram shows a state machine, consisting of states, transitions, events, and
activities. You use statechart diagrams to illustrate the dynamic view of a system. They are
especially important in modeling the behavior of an interface, class, or collaboration. Statechart
diagrams emphasize the event-ordered behavior of an object, which is especially useful in
modeling reactive systems.

Activity diagrams, a special case of statechart diagrams, are discussed in Chapter 19.
Activity Diagram

An activity diagram shows the flow from activity to activity within a system. An activity shows a set
of activities, the sequential or branching flow from activity to activity, and objects that act and are
acted upon. You use activity diagrams to illustrate the dynamic view of a system. Activity
diagrams are especially important in modeling the function of a system. Activity diagrams
emphasize the flow of control among objects.

Note

There are obvious practical limitations to illustrating something that's inherently
dynamic (the behavior of a system) using diagrams (inherently static artifacts,
especially when you draw them on a sheet of paper, a whiteboard, or the back of an
envelope). Rendered on a computer display, there are opportunities for animating
behavioral diagrams so that they either simulate an executable system or mirror the
actual behavior of a system that's executing. The UML allows you to create dynamic
diagrams and to use color or other visual cues to "run" the diagram. Some tools have
already demonstrated this advanced use of the UML.

Common Modeling Techniques

Modeling Different Views of a System

When you model a system from different views, you are in effect constructing your system
simultaneously from multiple dimensions. By choosing the right set of views, you set up a process
that forces you to ask good questions about your system and to expose risks that need to be
attacked. If you do a poor job of choosing these views or if you focus on one view at the expense
of all others, you run the risk of hiding issues and deferring problems that will eventually destroy
any chance of success.

To model a system from different views,

Decide which views you need to best express the architecture of your system and to
expose the technical risks to your project. The five views of an architecture described
earlier are a good starting point.

For each of these views, decide which artifacts you need to create to capture the
essential details of that view. For the most part, these artifacts will consist of various UML
diagrams.

As part of your process planning, decide which of these diagrams you'll want to put under
some sort of formal or semi-formal control. These are the diagrams for which you'll want
to schedule reviews and to preserve as documentation for the project.

Allow room for diagrams that are thrown away. Such transitory diagrams are still useful
for exploring the implications of your decisions and for experimenting with changes.

For example, if you are modeling a simple monolithic application that runs on a single machine,
you might need only the following handful of diagrams.

* Use case view |Use case diagrams

* Design view Class diagrams (for structural modeling) Interaction diagrams (for
behavioral modeling)

* Process view None required

* Implementation None required

view

* Deployment view |None required

If yours is a reactive system or if it focuses on process flow, you'll probably want to include
statechart diagrams and activity diagrams, respectively, to model your system's behavior.

Similarly, if yours is a client/server system, you'll probably want to include component diagrams
and deployment diagrams to model the physical details of your system.

Finally, if you are modeling a complex, distributed system, you'll need to employ the full range of
the UML's diagrams in order to express the architecture of your system and the technical risks to
your project, as in the following.

* Use case view |Use case diagrams Activity diagrams (for behavioral modeling)

* Design view Class diagrams (for structural modeling) Interaction diagrams (for behavioral
modeling) Statechart diagrams (for behavioral modeling)

* Process view Class diagrams (for structural modeling) Interaction diagrams (for behavioral
modeling)

* Implementation |Component diagram

view

» Deployment view |Deployment diagrams

Modeling Different Levels of Abstraction

Not only do you need to view a system from several angles, you'll also find people involved in
development who need the same view of the system but at different levels of abstraction. For
example, given a set of classes that capture the vocabulary of your problem space, a
programmer might want a detailed view down to the level of each class's attributes, operations,
and relationships. On the other hand, an analyst who's walking through some use case scenarios
with an end user will likely want only a much elided view of these same classes. In this context,
the programmer is working at a lower level of abstraction and the analysis and end user are
working at a higher level of abstraction, but all are working from the same model. In fact, because
diagrams are just a graphical presentation of the elements that make up a model, you can create

several diagrams against the same model or different models, each hiding or exposing different
sets of these elements and each showing different levels of detail.

Basically, there are two ways to model a system at different levels of abstraction: by presenting
diagrams with different levels of detail against the same model, or by creating models at different
levels of abstraction with diagrams that trace from one model to another.

To model a system at different levels of abstraction by presenting diagrams with different levels of
detall,

Consider the needs of your readers, and start with a given model.

If your reader is using the model to construct an implementation, she'll need diagrams
that are at a lower level of abstraction, which means that they'll need to reveal a lot of
detail. If she is using the model to present a conceptual model to an end user, she'll need
diagrams that are at a higher level of abstraction, which means that they'll hide a lot of
detail.

Depending on where you land in this spectrum of low-to-high levels of abstraction, create
a diagram at the right level of abstraction by hiding or revealing the following four
categories of things from your model:

1. Building blocks and relationships:

Hide those that are not relevant to the intent of your diagram or the needs of your
reader.

2. Adornments:

Reveal only the adornments of these building blocks and relationships that are
essential to understanding your intent.

3. Flow:

In the context of behavioral diagrams, expand only those messages or transitions
that are essential to understanding your intent.

4. Stereotypes:

In the context of stereotypes used to classify lists of things, such as attributes
and operations, reveal only those stereotyped items that are essential to
understanding your intent.

Messages are discussed in Chapter 15; transitions are discussed in Chapter 21; stereotypes
are discussed in Chapter 6.

The main advantage of this approach is that you are always modeling from a common semantic
repository. The main disadvantage of this approach is that changes from diagrams at one level of
abstraction may make obsolete diagrams at a different level of abstraction.

To model a system at different levels of abstraction by creating models at different levels of
abstraction,

Tr acedependencies are discussed in Chapter 31.

Consider the needs of your readers and decide on the level of abstraction that each
should view, forming a separate model for each level.

In general, populate your models that are at a high level of abstraction with simple
abstractions and your models that are at a low level of abstraction with detailed
abstractions. Establish trace dependencies among the related elements of different
models.

In practice, if you follow the five views of an architecture, there are four common
situations you'll encounter when modeling a system at different levels of abstraction:

1. Use cases and their realization:
Use cases in a use case model will trace to collaborations in a design model.
2. Collaborations and their realization:

Collaborations will trace to a society of classes that work together to carry out the
collaboration.

3. Components and their design:

Components in an implementation model will trace to the elements in a desigh model.
4. Nodes and their components:

Nodes in a deployment model will trace to components in an implementation model.

Use cases are discussed in Chapter 16; collaborations are discussed in Chapter 27;
components are discussed in Chapter 25; nodes are discussed in Chapter 26.

The main advantage of the approach is that diagrams at different levels of abstraction remain
more loosely coupled. This means that changes in one model will have less direct effect on other
models. The main disadvantage of this approach is that you must spend resources to keep these
models and their diagrams synchronized. This is especially true when your models parallel
different phases of the software development life cycle, such as when you decide to maintain an
analysis model separate from a design model.

Interaction diagrams are discussed in Chapter 18.
For example, suppose you are modeling a system for Web commerce—one of the main use
cases of such a system would be for placing an order. If you're an analyst or an end user, you'd

probably create some interaction diagrams at a high level of abstraction that show the action of
placing an order, as in Figure 7-1.

Figure 7-1 Interaction Diagram at a High Level of Abstraction

: OrderTaker : OrderFulfillment

submitOrder

|
|
>
placeOrder

acknowledgeOrder

On the other hand, a programmer responsible for implementing this scenario would have to build
on this diagram, expanding certain messages and adding other players in this interaction, as in

Figure 7-2.

Figure 7-2 Interaction at a Low Level of Abstraction

OrderTaker || : CreditCardAgent | : OrderFufiliment || : BilingAgent

[I

] I
submitOrder | :
I

for a variation of this
scenario.

I
]

i]
] L)
I]
I I 1
| processCard ! :
I I]
[} I 1
I] i
i I 1
laceOrder
; 2 . — triggerBill :
: : =
I I 1
i i
acknowledgeCOrder
- - - . :
I i I]
i i i 1
i I I
: : : See Credit Failure
I 1 1
I i I

Both of these diagrams work against the same model, but at different levels of detail. It's
reasonable to have many diagrams such as these, especially if your tools make it easy to
navigate from one diagram to another.

Modeling Complex Views

No matter how you break up your models, there are times when you'll find it necessary to create
large and complex diagrams. For example, if you want to analyze the entire schema of a
database encompassing 100 or more abstractions, it really is valuable to study a diagram
showing all these classes and their associations. In so doing, you'll be able to see common

patterns of collaboration. If you were to show this model at a higher level of abstraction by eliding
some detail, you'd lose the information necessary to make these insights.

Packages are discussed in Chapter 12; collaborations are discussed in Chapter 27.
To model complex views,

First, convince yourself there's no meaningful way to present this information at a higher
level of abstraction, perhaps eliding some parts of the diagram and retaining the detail in
other parts.

If you've hidden as much detail as you can and your diagram is still complex, consider
grouping some of the elements in packages or in higher level collaborations, then render
only those packages or collaborations in your diagram.

If your diagram is still complex, use notes and color as visual cues to draw the reader's
attention to the points you want to make.

If your diagram is still complex, print it in its entirety and hang it on a convenient large
wall. You lose the interactivity an online version of the diagram brings, but you can step
back from the diagram and study it for common patterns.

Hints and Tips
When you create a diagram,

Remember that the purpose of a diagram in the UML is not to draw pretty pictures but,
rather, to visualize, specify, construct, and document. Diagrams are a means to the end
of deploying an executable system.

Not all diagrams are meant to be preserved. Consider building up diagrams on the fly by
guerying the elements in your models, and use these diagrams to reason about your
system as it is being built. Many of these kinds of diagrams can be thrown away after
they have served their purpose (but the semantics upon which they were created will
remain as a part of the model).

Avoid extraneous or redundant diagrams. They clutter your models.

Reveal only enough detail in each diagram to address the issues for which it was
intended. Extraneous information can distract the reader from the key point you're trying
to make.

On the other hand, don't make your diagrams minimalist unless you really need to
present something at a very high level of abstraction. Oversimplification can hide details
that are important to reasoning about your models.

Keep a balance between the structural and behavioral diagrams in your system. Very few
systems are totally static or totally dynamic.

Don't make your diagrams too big (ones that run more than several printed pages are
hard to navigate) or too small (consider joining several trivial diagrams into one).

Give each diagram a meaningful name that clearly expresses its intent.
Keep your diagrams organized. Group them into packages according to view.

Don't obsess over the format of a diagram. Let tools help you.

A well-structured diagram
Is focused on communicating one aspect of a system's view.
Contains only those elements that are essential to understanding that aspect.

Provides detail consistent with its level of abstraction (expose only those adornments that
are essential to understanding).

Is not so minimalist that it misinforms the reader about semantics that are important.
When you draw a diagram,

Give it a name that communicates its purpose.

Lay out its elements to minimize lines that cross.

Organize its elements spatially so that things that are semantically close are laid out
physically close.

Use notes and color as visual cues to draw attention to important features of your
diagram.

Chapter 8. Class Diagrams

In this chapter
Modeling simple collaborations
Modeling a logical database schema
Forward and reverse engineering

Class diagrams are the most common diagram found in modeling object- oriented systems. A
class diagram shows a set of classes, interfaces, and collaborations and their relationships.

You use class diagrams to model the static design view of a system. For the most part, this
involves modeling the vocabulary of the system, modeling collaborations, or modeling schemas.
Class diagrams are also the foundation for a couple of related diagrams: component diagrams
and deployment diagrams.

Class diagrams are important not only for visualizing, specifying, and documenting structural
models, but also for constructing executable systems through forward and reverse engineering.

Getting Started

When you build a house, you start with a vocabulary that includes basic building blocks, such as
walls, floors, windows, doors, ceilings, and joists. These things are largely structural (walls have
height, width, and thickness), but they're also somewhat behavioral (different kinds of walls can
support different loads, doors open and close, there are constraints on the span of a unsupported
floor). In fact, you can't consider these structural and behavioral features independently. Rather,
when you build your house, you must consider how they interact. The process of architecting your
house thus involves assembling these things in a unique and pleasing manner intended to satisfy
all your functional and nonfunctional requirements. The blueprints you create to visualize your
house and to specify its details to your contractors for construction are, in effect, graphical
presentations of these things and their relationships.

Building software has much the same characteristics except that, given the fluidity of software,
you have the ability to define your own basic building blocks from scratch. With the UML, you use
class diagrams to visualize the static aspects of these building blocks and their relationships and
to specify their details for construction, as you can see in Figure 8-1.

Figure 8-1 A Class Diagram

"_'_-_é Company aggregation
-

class 1 ? g et

I ‘ 1.* s multiplicity g /n/a/me

1
Department Locationy Office «—

name : Name [—| address : String
0.1 voice : Number

constramt

role ,-’,\, eneralization
. {s ubs et} T g e

\' ______ EISEOCIE[[I{JT'I r

member | 1. manager Headquarters

Person

name : Name — attributes
employeelD : Integer «
litle ; String - operations

getPhoto(p: Photo) / :
getSoundBite() Contactinformation
getContactinformation() - - - =4 address String
getPersonalRecords() -

r T N interface

f PersonnelRecord

dependency | 'axID :)
employmentHistory

sala ;
ry ISecurelnformation

Terms and Concepts

A class diagram is a diagram that shows a set of classes, interfaces, and collaborations and their
relationships. Graphically, a class diagram is a collection of vertices and arcs.

Common Properties

The general properties of diagrams are discussed in Chapter 7.

A class diagram is just a special kind of diagram and shares the same common properties as do
all other diagrams— a name and graphical content that are a projection into a model. What
distinguishes a class diagram from all other kinds of diagrams is its particular content.

Contents

Classes are discussed in Chapters 4 and 9; interfaces are discussed in Chapter 11;
collaborations are discussed in Chapter 27; relationships are discussed in Chapters 5 and 10;
packages are discussed in Chapter 12; subsystems are discussed in Chapter 31; instances
are discussed in Chapter 13.

Class diagrams commonly contain the following things:
Classes
Interfaces
Collaborations
Dependency, generalization, and association relationships
Like all other diagrams, class diagrams may contain notes and constraints.

Class diagrams may also contain packages or subsystems, both of which are used to group
elements of your model into larger chunks. Sometimes, you'll want to place instances in your
class diagrams, as well, especially when you want to visualize the (possibly dynamic) type of an
instance.

Note

Component diagrams and deployment diagrams are similar to class diagrams, except
that instead of containing classes, they contain components and nodes, respectively.

Common Uses

Design views are discussed in Chapter 2.

You use class diagrams to model the static design view of a system. This view primarily supports
the functional requirements of a system—the services the system should provide to its end users.

When you model the static design view of a system, you'll typically use class diagrams in one of
three ways.

Modeling the vocabulary of a system is discussed in Chapter 4.
1. To model the vocabulary of a system

Modeling the vocabulary of a system involves making a decision about which abstractions are a
part of the system under consideration and which fall outside its boundaries. You use class
diagrams to specify these abstractions and their responsibilities.

Collaborations are discussed in Chapter 27.
2. To model simple collaborations
A collaboration is a society of classes, interfaces, and other elements that work together to

provide some cooperative behavior that's bigger than the sum of all the elements. For example,
when you're modeling the semantics of a transaction in a distributed system, you can't just stare

at a single class to understand what's going on. Rather, these semantics are carried out by a set
of classes that work together. You use class diagrams to visualize and specify this set of classes
and their relationships.

Persistence is discussed in Chapter 23; modeling physical databases is discussed in Chapter
29.

3. To model a logical database schema

Think of a schema as the blueprint for the conceptual design of a database. In many domains,
you'll want to store persistent information in a relational database or in an object-oriented
database. You can model schemas for these databases using class diagrams.

Common Modeling Techniques

Modeling Simple Collaborations

No class stands alone. Rather, each works in collaboration with others to carry out some
semantics greater than each individual. Therefore, in addition to capturing the vocabulary of your
system, you'll also need to turn your attention to visualizing, specifying, constructing, and
documenting the various ways these things in your vocabulary work together. You use class
diagrams to represent such collaborations.

When you create a class diagram, you just model a part of the things and relationships that make
up your system's design view. For this reason, each class diagram should focus on one
collaboration at a time.

To model a collaboration,

Mechanisms such as this are often coupled to use cases, as discussed in Chapter 16; scenarios
are threads through a use case, as discussed in Chapter 15.

Identify the mechanism you'd like to model. A mechanism represents some function or
behavior of the part of the system you are modeling that results from the interaction of a
society of classes, interfaces, and other things.

For each mechanism, identify the classes, interfaces, and other collaborations that
participate in this collaboration. Identify the relationships among these things, as well.

Use scenarios to walk through these things. Along the way, you'll discover parts of your
model that were missing and parts that were just plain semantically wrong.

Be sure to populate these elements with their contents. For classes, start with getting a
good balance of responsibilities. Then, over time, turn these into concrete attributes and
operations.

For example, Figure 8-2 shows a set of classes drawn from the implementation of an
autonomous robot. The figure focuses on the classes involved in the mechanism for moving the
robot along a path. You'll find one abstract class (\Vbt or) with two concrete children,

St eeri nghbt or and Mai nVbt or . Both of these classes inherit the five operations of their
parent, Vbt or . The two classes are, in turn, shown as parts of another class, Dri ver. The
class Pat hAgent has a one-to-one association to Dr i ver and a one-to-many association to
Col I'i si onSensor. No attributes or operations are shown for Pat hAgent , although its
responsibilities are given.

Figure 8-2 Modeling Simple Collaborations

PathAgent CollisionSensor

Responsibilities
-- seek path
-- avoid obstacles |1 1 Driver

1 1
SteeringMotor MainMotor

Y X

Motor

move(d : Direction; s : Speed)
stop()

resetCounter()

Status status()

Integer distance()

There are many more classes involved in this system, but this diagram focuses only on those
abstractions that are directly involved in moving the robot. You'll see some of these same classes
in other diagrams. For example, although not shown here, the class Pat hAgent collaborates
with at least two other classes (Envi r onnent and CGoal Agent) in a higher-level mechanism for
managing the conflicting goals the robot might have at a given moment. Similarly, also not shown
here, the classes Col | i si onSensor and Dri ver (and its parts) collaborate with another class
(Faul t Agent) in a mechanism responsible for continuously checking the robot's hardware for
errors. By focusing on each of these collaborations in different diagrams, you provide an
understandable view of the system from several angles.

Modeling a Logical Database Schema

Modeling thedistribution andmigration ofpersistent objects is discussed in Chapter 23; modeling
physical databases is discussed in Chapter 29.

Many of the systems you'll model will have persistent objects, which means that they can be
stored in a database for later retrieval. Most often, you'll use a relational database, an object-
oriented database, or a hybrid object/relational database for persistent storage. The UML is well-
suited to modeling logical database schemas, as well as physical databases themselves.

The UML's class diagrams are a superset of entity-relationship (E-R) diagrams, a common
modeling tool for logical database design. Whereas classical E-R diagrams focus only on data,

class diagrams go a step further by permitting the modeling of behavior, as well. In the physical
database, these logical operations are generally turned into triggers or stored procedures.

To model a schema,

Identify those classes in your model whose state must transcend the lifetime of their
applications.

Create a class diagram that contains these classes and mark them as persistent (a
standard tagged value). You can define your own set of tagged values to address
database-specific details.

Expand the structural details of these classes. In general, this means specifying the
details of their attributes and focusing on the associations and their cardinalities that
structure these classes.

Watch for common patterns that complicate physical database design, such as cyclic
associations, one-to-one associations, and n-ary associations. Where necessary, create
intermediate abstractions to simplify your logical structure.

Consider also the behavior of these classes by expanding operations that are important
for data access and data integrity. In general, to provide a better separation of concerns,
business rules concerned with the manipulation of sets of these objects should be
encapsulated in a layer above these persistent classes.

Where possible, use tools to help you transform your logical design into a physical
design.

Stereotypes are discussed in Chapter 6.
Note

Logical database design is beyond the scope of this book. The focus here is simply to
show how you can model schemas using the UML. In practice, you'll end up using
stereotypes tuned to the kind of database (relational or object-oriented) you are using.

Figure 8-3 shows a set of classes drawn from an information system for a school. This figure
expands upon an earlier class diagram, and you'll see the details of these classes revealed to a
level sufficient to construct a physical database. Starting at the bottom-left of this diagram, you
will find the classes named St udent , Course, and | nstruct or. There's an association
between St udent and Cour se, specifying that students attend courses. Furthermore, every
student may attend any number of courses and every course may have any number of students.

Figure 8-3 Modeling a Schema

School
{parsatant}

name : Name

address : String Department
phone : Number {persistent} 0.1
addStudenty() . Has name : Name
removeStudent() V.l 1..*| addinstructor(}
getStudent() removelnstructor() ™
getAllStudents() getinstructor() 1.*
removeDepariment()
getDepartment() 1.°
_geWIDepamﬂen[s{} A
1.7 AssignedTo
&
Member
. 1. 0.1
1.7 chairperson
Student Course PR
i
Lot Attends p Liveenia) 4 Teaches {persiztent)
name : Name : *l name : Name

student|D : Number courselD : Number |~ 1-"[Mame : Name

Modeling primitive types is discussed in Chapter 4; aggregation is discussed in Chapters 5 and
10.

All six of these classes are marked as persistent, indicating that their instances are intended to
live in a database or some other form of persistent store. This diagram also exposes the
attributes of all six of these classes. Notice that all the attributes are primitive types. When you
are modeling a schema, you'll generally want to model the relationship to any nonprimitive types
using an explicit aggregation rather than an attribute.

Two of these classes (School and Depar t nent) expose several operations for manipulating
their parts. These operations are included because they are important to maintain data integrity
(adding or removing a Depar t nent, for example, will have some rippling effects). There are
many other operations that you might consider for these and the other classes, such as querying
the prerequisites of a course before assigning a student. These are more business rules than
they are operations for database integrity and so are best placed at a higher level of abstraction
than this schema.

Forward and Reverse Engineering
The importance ofmodeling is discussed in Chapter 1.

Modeling is important, but you have to remember that the primary product of a development team
is software, not diagrams. Of course, the reason you create models is to predictably deliver at the
right time the right software that satisfies the evolving goals of its users and the business. For this
reason, it's important that the models you create and the implementations you deploy map to one
another and do so in a way that minimizes or even eliminates the cost of keeping your models
and your implementation in sync with one another.

Activity diagrams are discussed in Chapter 19.

For some uses of the UML, the models you create will never map to code. For example, if you are
modeling a business process using activity diagrams, many of the activities you model will involve
people, not computers. In other cases, you'll want to model systems whose parts are, from your
level of abstraction, just a piece of hardware (although at another level of abstraction, it's a good
bet that this hardware contains an embedded computer and software).

In most cases, though, the models you create will map to code. The UML does not specify a
particular mapping to any object-oriented programming language, but the UML was designed with
such mappings in mind. This is especially true for class diagrams, whose contents have a clear
mapping to all the industrial-strength object-oriented languages, such as Java, C++, Smalltalk,
Eiffel, Ada, ObjectPascal, and Forte. The UML was also designed to map to a variety of
commercial object-based languages, such as Visual Basic.

Stereotypes and tagged values are discussed in Chapter 6.
Note

The mapping of the UML to specific implementation languages for forward and reverse
engineering is beyond the scope of this book. In practice, you'll end up using
stereotypes and tagged values tuned to the programming language you are using.

Forward engineering is the process of transforming a model into code through a mapping to an
implementation language. Forward engineering results in a loss of information, because models
written in the UML are semantically richer than any current object-oriented programming
language. In fact, this is a major reason why you need models in addition to code. Structural
features, such as collaborations, and behavioral features, such as interactions, can be visualized
clearly in the UML, but not so clearly from raw code.

To forward engineer a class diagram,

Identify the rules for mapping to your implementation language or languages of choice.
This is something you'll want to do for your project or your organization as a whole.

Depending on the semantics of the languages you choose, you may have to constrain
your use of certain UML features. For example, the UML permits you to model multiple
inheritance, but Smalltalk permits only single inheritance. You can either choose to
prohibit developers from modeling with multiple inheritance (which makes your models
language-dependent) or develop idioms that transform these richer features into the
implementation language (which makes the mapping more complex).

Use tagged values to specify your target language. You can do this at the level of
individual classes if you need precise control. You can also do so at a higher level, such
as with collaborations or packages.

Use tools to forward engineer your models.
Patterns are discussed in Chapter 28.

Figure 8-4 illustrates a simple class diagram specifying an instantiation of the chain of
responsibility pattern. This particular instantiation involves three classes: Cl | ent ,

Event Handl er, and GUI Event Handl er. Cl i ent and Event Handl er are shown as abstract
classes, whereas CU Event Handl er is concrete. Event Handl er has the usual operation
expected of this pattern (handl eRequest), although two private attributes have been added for
this instantiation.

Figure 8-4 Forward Engineering

successor
EventHandler
Client e
!
pavay | 3 - currentEventiD : Integer
- source : Strings

handleRequest() : void

GUIEventHandler

{Java)

All of these classes specify a mapping to Java, as noted in their tagged value. Forward
engineering the classes in this diagram to Java is straightforward, using a tool. Forward
engineering the class Event Handl er yields the following code.

public abstract class EventHandl er {

Event Handl er successor;
private Integer currentEventlD,
private String source;

Event Handl er () {}
public void handl eRequest () {}

}

Reverse engineering is the process of transforming code into a model through a mapping from a
specific implementation language. Reverse engineering results in a flood of information, some of
which is at a lower level of detail than you'll need to build useful models. At the same time,
reverse engineering is incomplete. There is a loss of information when forward engineering
models into code, and so you can't completely recreate a model from code unless your tools
encode information in the source comments that goes beyond the semantics of the
implementation language.

Figure 3-3 was created by reverse engineering part of theJava class library.
To reverse engineer a class diagram,

Identify the rules for mapping from your implementation language or languages of choice.
This is something you'll want to do for your project or your organization as a whole.

Using a tool, point to the code you'd like to reverse engineer. Use your tool to generate a
new model or modify an existing one that was previously forward engineered.

Using your tool, create a class diagram by querying the model. For example, you might
start with one or more classes, then expand the diagram by following specific
relationships or other neighboring classes. Expose or hide details of the contents of this
class diagram as necessary to communicate your intent.

Hints and Tips

When you create class diagrams in the UML, remember that every class diagram is just a
graphical presentation of the static design view of a system. No single class diagram need
capture everything about a system's design view. Collectively, all the class diagrams of a system
represent the system's complete static design view; individually, each represents just one aspect.

A well-structured class diagram
Is focused on communicating one aspect of a system's static design view.
Contains only elements that are essential to understanding that aspect.

Provides detail consistent with its level of abstraction, with only those adornments that
are essential to understanding.

Is not so minimalist that it misinforms the reader about important semantics.
When you draw a class diagram,

Give it a name that communicates its purpose.

Lay out its elements to minimize lines that cross.

Organize its elements spatially so that things that are semantically close are laid out
physically close.

Use notes and color as visual cues to draw attention to important features of your
diagram.

Try not to show too many kinds of relationships. In general, one kind of relationship will
tend to dominate each class diagram.

Part Ill: Advanced Structural Modeling

Chapter 9. Advanced Classes

In this chapter
Classifiers, special properties of attributes and operations, and different kinds of classes
Modeling the semantics of a class
Choosing the right kind of classifier
Classes are indeed the most important building block of any object-oriented system. However,
classes are just one kind of an even more general building block in the UML—classifiers. A
classifier is a mechanism that describes structural and behavioral features. Classifiers include
classes, interfaces, datatypes, signals, components, nodes, use cases, and subsystems.
The basic properties of classes are discussed in Chapter 4.
Classifiers (and especially classes) have a number of advanced features beyond the simpler
properties of attributes and operations described in the previous section: You can model
multiplicity, visibility, signatures, polymorphism, and other characteristics. In the UML, you can
model the semantics of a class so that you can state its meaning to whatever degree of formality
you like.

In the UML, there are several kinds of classifiers and classes; it's important that you choose the
one that best models your abstraction of the real world.

Getting Started

Architecture is discussed in Chapter 2.

When you build a house, at some point in the project you'll make an architectural decision about
your building materials. Early on, it's sufficient to simply state wood, stone, or steel. That's a level
of detail sufficient for you to move forward. The material you choose will be affected by the
requirements of your project—steel and concrete would be a good choice if you are building in an
area susceptible to hurricanes, for example. As you move forward, the material you choose will
affect your design decisions that follow—choosing wood versus steel will affect the mass that can
be supported, for example.

As your project continues, you'll have to refine these basic design decisions and add more detail
sufficient for a structural engineer to validate the safety of the design and for a builder to proceed
with construction. For example, you might have to specify not just wood, but wood of a certain
grade that's been treated for resistance to insects.

Responsibilities are discussed in Chapter 6.

It's the same when you build software. Early in a project, it's sufficient to say that you'll include a
Cust orer class that carries out certain responsibilities. As you refine your architecture and move
to construction, you'll have to decide on a structure for the class (its attributes) and a behavior (its
operations) that are sufficient and necessary to carry out those responsibilities. Finally, as you
evolve to the executable system, you'll need to model details, such as the visibility of individual
attributes and operations, the concurrency semantics of the class as a whole and its individual
operations, and the interfaces the class realizes.

The UML provides a representation for a number of advanced properties, as Figure 9-1 shows.
This notation permits you to visualize, specify, construct, and document a class to any level of
detail you wish, even sufficient to support forward and reverse engineering of models and code.

Figure 9-1 Advanced Classes

absfract
“‘“""-—...
——=e Frame _—1— lype
class scope | header : FrameHeader ®

“—euniquelD : Long

ublic -
P e+ add Message(m : Message) : Status
protected — —®# setCheckSum() 1 signature

private e GOCTY PR

Terms and Concepts

A classifier is a mechanism that describes structural and behavioral features. Classifiers include
classes, interfaces, datatypes, signals, components, nodes, use cases, and subsystems.

Classifiers

Modeling the vocabulary of a system is discussed in Chapter 4; the class/object dichotomy is
discussed in Chapter 2.

When you model, you'll discover abstractions that represent things in the real world and things in
your solution. For example, if you are building a Web-based ordering system, the vocabulary of
your project will likely include a Cust oner class (representing people who order products) and a

Transact i on class (an implementation artifact, representing an atomic action). In the deployed
system, you might have a Pr i ci ng component, with instances living on every client node. Each
of these abstractions will have instances; separating the essence and the instance of the things in
your world is an important part of modeling.

Instances are discussed in Chapter 13; packages are discussed in Chapter 12; generalization
is discussed in Chapters 5 and 10; associations are discussed in Chapters 5 and 10;
messages are discussed in Chapter 15; interfaces are discussed in Chapter 11; datatypes are
discussed in Chapters 4 and 11; signals are discussed in Chapter 20; components are
discussed in Chapter 25; nodes are discussed in Chapter 26; use cases are discussed in
Chapter 16; subsystems are discussed in Chapter 31.

Some things in the UML don't have instances—for example, packages and generalization
relationships. In general, those modeling elements that can have instances are called classifiers
(associations and messages can have instances as well, but their instances are not quite the
same as the instances of a class). Even more important, a classifier has structural features (in the
form of attributes), as well as behavioral features (in the form of operations). Every instance of a
given classifier shares the same features.

The most important kind of classifier in the UML is the class. A class is a description of a set of
objects that share the same attributes, operations, relationships, and semantics. Classes are not
the only kind of classifier, however. The UML provides a number of other kinds of classifiers to
help you model.

* Interface |A collection of operations that are used to specify a service of a class or a
component

» Datatype |A type whose values have no identity, including primitive builtin types (such as
numbers and strings), as well as enumeration types (such as Boolean)

* Signal The specification of an asynchronous stimulus communicated between instances
. A physical and replaceable part of a system that conforms to and provides the
Component |realization of a set of interfaces

* Node A physical element that exists at run time and that represents a computational

resource, generally having at least some memory and often processing capability

* Use case |A description of a set of a sequence of actions, including variants, that a system
performs that yields an observable result of value to a particular actor

. A grouping of elements of which some constitute a specification of the behavior
Subsystem |offered by the other contained elements

For the most part, every kind of classifier has both structural and behavioral features (interfaces
are the one exception; they may not have attributes). Furthermore, when you model with any of
these classifiers, you may use all the advanced features described in this chapter to provide the
level of detail you need to capture the meaning of the abstraction.

Graphically, the UML distinguishes among these different classifiers, as Figure 9-2 shows.

Figure 9-2 Classifiers

class datatype

signal
Shape interface «lypes .;csi.gnah;.
T Int
il il O {values range from bl
move() IUnknown -24*31-1 to +2*"31}
resize()
display() use case

node

componenl Process IGD
agb_servar

kemel3Z dll

subsystem

1

asubsyslems»
Customer Service
subsyslam

Note

A minimalist approach would have used one icon for all classifiers. That doesn't make
sense because, for example, classes and components are very different abstractions
(one is logical, the other physical), so having a distinctive visual cue was deemed
important. Similarly, a maximal approach would have used different icons for each kind
of classifier. That doesn't make sense either because, for example, classes and
datatypes aren't that different. The design of the UML strikes a balance—those
classifiers that are materially different from others have their own icon, and those that
are not materially different use special keywords (such ast ype, si gnal , and
subsyst en.

Visibility

One of the most important details you can specify for a classifier's attributes and operations is its
visibility. The visibility of a feature specifies whether it can be used by other classifiers. In the
UML, you can specify any of three levels of visibility.

A classifier can see another classifier if it is in scope and if there is an explicit or implicit
relationship to the target; relationships are discussed in Chapters 5 and 10; descendants come
from generalization relationships, as discussed in Chapter 5; friendship allows a classifier to
expose its private parts, as discussed in Chapter 10.

1.public Any outside classifier with visibility to the given classifier can use the feature;
specified by prepending the symbol +

2. Any descendant of the classifier can use the feature; specified by prepending
protect ed |the symbol #

‘3_ private ‘Only the classifier itself can use the feature; specified by prepending the symbol

Figure 9-3 shows a mix of public, protected, and private figures for the class Tool bar .

Figure 9-3 Visibility

Toolbar

currentSelection : Tcolr? protected
toolCount : Integer &—

_ Le + pickltem(i : Integer)
public Le + addTool(t : Tool)

e + remove Tool(i : integer)
e + getTool() : Tool

® % checkOrphans()

Le - compact()

protected

private —— |

When you specify the visibility of a classifier's features, you generally want to hide all its
implementation details and expose only those features that are necessary to carry out the
responsibilities of the abstraction. That's the very basis of information hiding, which is essential to
building solid, resilient systems. If you don't explicitly adorn a feature with a visibility symbol, you
can usually assume that it is public.

Note

The UML's visibility property matches the semantics common among most
programming languages, including C++, Java, Ada, and Eiffel.

Scope
Instances are discussed in Chapter 13.

Another important detail you can specify for a classifier's attributes and operations is its owner
scope. The owner scope of a feature specifies whether the feature appears in each instance of
the classifier or whether there is just a single instance of the feature for all instances of the
classifier. In the UML, you can specify two kinds of owner scope.

‘1_ i nst ance ‘Each instance of the classifier holds its own value for the feature.

‘2, classifier ‘There is just one value of the feature for all instances of the classifier.

As Figure 9-4 (a simplification of the first figure) shows, a feature that is classifier scoped is
rendered by underlining the feature's name. No adornment means that the feature is instance
scoped.

Figure 9-4 Owner Scope

Frame

class scope _— instance scope

header : FrameHeader
\\1uniguelD . Long

In general, most features of the classifiers you model will be instance scoped. The most common
use of classifier scoped features is for private attributes that must be shared among a set of
instances (and with the guarantee that no other instances have access to that attribute), such as
for generating unique IDs among all instances of a given classifier, and for operations that create
instances of the class.

Note

Classifier scoped maps to what C++ calls static attributes and operations.

Abstract, Root, Leaf, and Polymorphic Elements
Generalization is discussed in Chapters 5 and 10; instances are discussed in Chapter 13.

You use generalization relationships to model a lattice of classes, with more-generalized
abstractions at the top of the hierarchy and more-specific ones at the bottom. Within these
hierarchies, it's common to specify that certain classes are abstract—meaning that they may not
have any direct instances. In the UML, you specify that a class is abstract by writing its name in
italics. For example, as Figure 9-5 shows, | con, Rectangul arlcon, and Arbitrarylcon
are all abstract classes. By contrast, a concrete class (such as But t on and OKBut t on) is one
that may have direct instances.

Figure 9-5 Abstract and Concrete Classes and Operations

|} lcon .
il oot} |7 pasec
- {root} base class
abstracl class arigin : Paoinl
/ —
{ display() & "l“ absftract operation
| getlD{} : Integer {leafle,

—— concrele opearation

/- abstract class

"wReclangularicon | Arbitrarylcon

height : Integer ' adge : LineCollection
width : Integer

I isinside(p @ Paint) Bauleanq\

—Il— polymorphic operalion
Buttone—— T, poncrete class

display()

B,

S|

OKButton® .
{leal} | T~ j|eaf class

display(}

Whenever you use a class, you'll probably want to inherit features from other, more-general,
classes, and have other, more-specific, classes inherit features from it. These are the normal
semantics you get from classes in the UML. However, you can also specify that a class may have
no children. Such an element is called a leaf class and is specified in the UML by writing the
property | eaf below the class's name. For example, in the figure, OKBut t on is a leaf class, so it
may have no children.

Less common but still useful is the ability to specify that a class may have no parents. Such an
element is called a root class, and is specified in the UML by writing the property r oot below the
class's name. For example, in the figure, | con is a root class. Especially when you have multiple,
independent inheri-tance lattices, it's useful to designate the head of each hierarchy in this
manner.

Messages are discussed in Chapter 15.

Operations have similar properties. Typically, an operation is polymorphic, which means that, in a
hierarchy of classes, you can specify operations with the same signature at different points in the
hierarchy. Ones in the child classes override the behavior of ones in the parent classes. When a
message is dispatched at run time, the operation in the hierarchy that is invoked is chosen
polymorphically—that is, a match is determined at run time according to the type of the object.
For example, di spl ay and i sl nsi de are both polymorphic operations. Furthermore, the
operation | con: : di spl ay() is abstract, meaning that it is incomplete and requires a child to
supply an implementation of the operation. In the UML, you spe