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Preface 
The Unified Modeling Language (UML) is a graphical language for visualizing, specifying, 
constructing, and documenting the artifacts of a software-intensive system. The UML gives you a 
standard way to write a system's blueprints, covering conceptual things, such as business 
processes and system functions, as well as concrete things, such as classes written in a specific 
programming language, database schemas, and reusable software components. 

This book teaches you how to use the UML effectively. 

Goals 
In this book, you will 

• Learn what the UML is, what it is not, and why the UML is relevant to the process of 
developing software-intensive systems 

• Master the vocabulary, rules, and idioms of the UML and, in general, learn how to 
"speak" the language effectively 

• Understand how to apply the UML to solve a number of common modeling problems 

The user guide provides a reference to the use of specific UML features. However, it is not 
intended to be a comprehensive reference manual for the UML; that is the focus of another book, 
The Unified Modeling Language Reference Manua l (Rumbaugh, Jacobson, Booch, Addison-
Wesley, 1999). 

The user guide describes a development process for use with the UML. However, it is not 
intended to provide a complete reference to that process; that is the focus of yet another book, 
The Unified Software Development Process (Jacobson, Booch, Rumbaugh, Addison-Wesley, 
1999). 

Finally, this book provides hints and tips for using the UML to solve a number of common 
modeling problems, but it does not teach you how to model. This is similar to a user guide for a 
programming language that teaches you how to use the language but does not teach you how to 
program. 

Audience 



The UML is applicable to anyone involved in the production, deployment, and maintenance of 
software. The user guide is primarily directed to members of the development team who create 
UML models. However, it is also suitable to those who read them, working together to 
understand, build, test, and release a software-intensive system. Although this encompasses 
almost every role in a software development organization, the user guide is especially relevant to 
analysts and end users (who specify the required structure and behavior of a system), architects 
(who design systems that satisfy those requirements), developers (who turn those architectures 
into executable code), quality assurance personnel (who verify and validate the system's 
structure and behavior), librarians (who create and catalogue components), and project and 
program managers (who generally wrestle with chaos, provide leadership and direction, and 
orchestrate the resources necessary to deliver a successful system). 

The user guide assumes a basic knowledge of object-oriented concepts. Experience in an object-
oriented programming language or method is helpful but not required. 

How to Use This Book 
For the developer approaching the UML for the first time, the user guide is best read linearly. You 
should pay particular attention to Chapter 2, which presents a conceptual model of the UML. All 
chapters are structured so that each builds upon the content of the previous one, thus lending 
itself to a linear progression. 

For the experienced developer seeking answers to common modeling problems using the UML, 
this book can be read in any order. You should pay particular attention to the common modeling 
problems presented in each chapter. 

Organization and Special Features 
The user guide is organized into seven major sections: 

• Section 1 Getting Started 

• Section 2 Basic Structural Modeling 

• Section 3 Advanced Structural Modeling 

• Section 4 Basic Behavioral Modeling 

• Section 5 Advanced Behavioral Modeling 

• Section 6 Architectural Modeling 

• Section 7 Wrapping Up 

The user guide contains three appendices: a summary of the UML notation, a list of standard 
UML elements, and a summary of the Rational Unified Process. A glossary of common terms is 
also provided. 

Each chapter addresses the use of a specific UML feature, and most are organized into the 
following four sections: 

1. Getting Started 

2. Terms and Concepts 

3. Common Modeling Techniques 



4. Hints and Tips 

The third section introduces and then solves a set of common modeling problems. To make it 
easy for you to browse the guide in search of these use cases for the UML, each problem is 
identified by a distinct heading, as in the following example. 

Modeling Architectural Patterns 

Each chapter begins with a summary of the features it covers, as in the following example. 

In this chapter 
• Active objects, processes, and threads 

• Modeling multiple flows of control 

• Modeling interprocess communication 

• Building thread-safe abstractions 

Similarly, parenthetical comments and general guidance are set apart as notes, as in the 
following example. 

Note 

You can specify more complex multiplicities by using a list, such as 0..1, 3..4, 
6..*, which would mean "any number of objects other than 2 or 5." 

 

Components are discussed in Chapter 25. 

The UML is semantically rich. Therefore, a presentation about one feature may naturally involve 
another. In such cases, cross references are provided in the left margin, as on this page. 

Blue highlights are used in figures to distinguish text that explains a model from text that is part of 
the model itself. Code is distinguished by displaying it in a monospace font, as in this 
example. 

A Brief History of the UML 
Object-oriented modeling languages appeared sometime between the mid 1970s and the late 
1980s as methodologists, faced with a new genre of object-oriented programming languages and 
increasingly complex applications, began to experiment with alternative approaches to analysis 
and design. The number of object-oriented methods increased from fewer than 10 to more than 
50 during the period between 1989 and 1994. Many users of these methods had trouble finding a 
modeling language that met their needs completely, thus fueling the so-called method wars. 
Learning from experience, new generations of these methods began to appear, with a few clearly 
prominent methods emerging, most notably Booch, Jacobson's OOSE (Object-Oriented Software 
Engineering), and Rumbaugh's OMT (Object Modeling Technique). Other important methods 
included Fusion, Shlaer-Mellor, and Coad-Yourdon. Each of these was a complete method, 
although each was recognized as having strengths and weaknesses. In simple terms, the Booch 
method was particularly expressive during the design and construction phases of projects, OOSE 
provided excellent support for use cases as a way to drive requirements capture, analysis, and 



high-level design, and OMT-2 was most useful for analysis and data-intensive information 
systems. The behavioral component of many object-oriented methods, including the Booch 
method and OMT, was the language of statecharts, invented by David Harel. Prior to this object-
oriented adoption, statecharts were used mainly in the realm of functional decomposition and 
structured analysis, and led to the development of executable models and tools that generated 
full running code. 

A critical mass of ideas started to form by the mid 1990s, when Grady Booch (Rational Software 
Corporation), Ivar Jacobson (Objectory), and James Rumbaugh (General Electric) began to adopt 
ideas from each other's methods, which collectively were becoming recognized as the leading 
object-oriented methods worldwide. As the primary authors of the Booch, OOSE, and OMT 
methods, we were motivated to create a unified modeling language for three reasons. First, our 
methods were already evolving toward each other independently. It made sense to continue that 
evolution together rather than apart, eliminating the potential for any unnecessary and gratuitous 
differences that would further confuse users. Second, by unifying our methods, we could bring 
some stability to the object-oriented marketplace, allowing projects to settle on one mature 
modeling language and letting tool builders focus on delivering more useful features. Third, we 
expected that our collaboration would yield improvements for all three earlier methods, helping us 
to capture lessons learned and to address problems that none of our methods previously handled 
well. 

As we began our unification, we established three goals for our work: 

1. To model systems, from concept to executable artifact, using object- oriented techniques 

2. To address the issues of scale inherent in complex, mission-critical systems 

3. To create a modeling language usable by both humans and machines 

Devising a language for use in object-oriented analysis and design is not unlike designing a 
programming language. First, we had to constrain the problem: Should the language encompass 
requirements specification? Should the language be sufficient to permit visual programming? 
Second, we had to strike a balance between expressiveness and simplicity. Too simple a 
language would limit the breadth of problems that could be solved; too complex a language would 
overwhelm the mortal developer. In the case of unifying existing methods, we also had to be 
sensitive to the installed base. Make too many changes, and we would confuse existing users; 
resist advancing the language, and we would miss the opportunity of engaging a much broader 
set of users and of making the language simpler. The UML definition strives to make the best 
trade-offs in each of these areas. 

The UML effort started officially in October 1994, when Rumbaugh joined Booch at Rational. Our 
project's initial focus was the unification of the Booch and OMT methods. The version 0.8 draft of 
the Unified Method (as it was then called) was released in October 1995. Around the same time, 
Jacobson joined Rational and the scope of the UML project was expanded to incorporate OOSE. 
Our efforts resulted in the release of the UML version 0.9 documents in June 1996. Throughout 
1996, we invited and received feedback from the general software engineering community. 
During this time, it also became clear that many software organizations saw the UML as strategic 
to their business. We established a UML consortium, with several organizations willing to 
dedicate resources to work toward a strong and complete UML definition. Those partners 
contributing to the UML 1.0 definition included Digital Equipment Corporation, Hewlett-Packard, I-
Logix, Intellicorp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle, Rational, Texas 
Instruments, and Unisys. This collaboration resulted in the UML 1.0, a modeling language that 
was well-defined, expressive, powerful, and applicable to a wide spectrum of problem domains. 
UML 1.0 was offered for standardization to the Object Management Group (OMG) in January 
1997, in response to their request for proposal for a standard modeling language. 



Between January 1997 and July 1997, the original group of partners was expanded to include 
virtually all of the other submitters and contributors of the original OMG response, including 
Andersen Consulting, Ericsson, ObjecTime Limited, Platinum Technology, PTech, Reich 
Technologies, Softeam, Sterling Software, and Taskon. A semantics task force was formed, led 
by Cris Kobryn of MCI Systemhouse and administered by Ed Eykholt of Rational, to formalize the 
UML specification and to integrate the UML with other standardization efforts. A revised version 
of the UML (version 1.1) was offered to the OMG for standardization in July 1997. In September 
1997, this version was accepted by the OMG Analysis and Design Task Force (ADTF) and the 
OMG Architecture Board and then put up for vote by the entire OMG membership. UML 1.1 was 
adopted by the OMG on November 14, 1997. 

Maintenance of the UML was then taken over by the OMG Revision Task Force (RTF), led by 
Cris Kobryn. The RTF released an editorial revision, UML 1.2, in June 1998. In fall 1998, the RTF 
released UML 1.3, which this user guide describes, providing some technical cleanup. 
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Chapter 1. Why We Model 
In this chapter 

• The importance of modeling 

• Four principles of modeling 

• The essential blueprints of a software system 

• Object-oriented modeling 

A successful software organization is one that consistently deploys quality software that meets 
the needs of its users. An organization that can develop such software in a timely and predictable 
fashion, with an efficient and effective use of resources, both human and material, is one that has 
a sustainable business. 

There's an important implication in this message: The primary product of a development team is 
not beautiful documents, world-class meetings, great slogans, or Pulitzer prize— winning lines of 



source code. Rather, it is good software that satisfies the evolving needs of its users and the 
business. Everything else is secondary. 

Unfortunately, many software organizations confuse "secondary" with "irrelevant." To deploy 
software that satisfies its intended purpose, you have to meet and engage users in a disciplined 
fashion, to expose the real requirements of your system. To develop software of lasting quality, 
you have to craft a solid architectural foundation that's resilient to change. To develop software 
rapidly, efficiently, and effectively, with a minimum of software scrap and rework, you have to 
have the right people, the right tools, and the right focus. To do all this consistently and 
predictably, with an appreciation for the lifetime costs of the system, you must have a sound 
development process that can adapt to the changing needs of your business and technology. 

Modeling is a central part of all the activities that lead up to the deployment of good software. We 
build models to communicate the desired structure and behavior of our system. We build models 
to visualize and control the system's architecture. We build models to better understand the 
system we are building, often exposing opportunities for simplification and reuse. We build 
models to manage risk. 

The Importance of Modeling 
If you want to build a dog house, you can pretty much start with a pile of lumber, some nails, and 
a few basic tools, such as a hammer, saw, and tape measure. In a few hours, with little prior 
planning, you'll likely end up with a dog house that's reasonably functional, and you can probably 
do it with no one else's help. As long as it's big enough and doesn't leak too much, your dog will 
be happy. If it doesn't work out, you can always start over, or get a less demanding dog. 

If you want to build a house for your family, you can start with a pile of lumber, some nails, and a 
few basic tools, but it's going to take you a lot longer, and your family will certainly be more 
demanding than the dog. In this case, unless you've already done it a few dozen times before, 
you'll be better served by doing some detailed planning before you pound the first nail or lay the 
foundation. At the very least, you'll want to make some sketches of how you want the house to 
look. If you want to build a quality house that meets the needs of your family and of local building 
codes, you'll need to draw some blueprints as well, so that you can think through the intended 
use of the rooms and the practical details of lighting, heating, and plumbing. Given these plans, 
you can start to make reasonable estimates of the amount of time and materials this job will 
require. Although it is humanly possible to build a house yourself, you'll find it is much more 
efficient to work with others, possibly subcontracting out many key work products or buying pre-
built materials. As long as you stay true to your plans and stay within the limitations of time and 
money, your family will most likely be satisfied. If it doesn't work out, you can't exactly get a new 
family, so it is best to set expectations early and manage change carefully. 

If you want to build a high-rise office building, it would be infinitely stupid for you to start with a 
pile of lumber, some nails, and a few basic tools. Because you are probably using other people's 
money, they will demand to have input into the size, shape, and style of the building. Often, they 
will change their minds, even after you've started building. You will want to do extensive planning, 
because the cost of failure is high. You will be just a part of a much larger group responsible for 
developing and deploying the building, and so the team will need all sorts of blueprints and 
models to communicate with one another. As long as you get the right people and the right tools 
and actively manage the process of transforming an architectural concept into reality, you will 
likely end up with a building that will satisfy its tenants. If you want to keep building buildings, then 
you will want to be certain to balance the desires of your tenants with the realities of building 
technology, and you will want to treat the rest of your team professionally, never placing them at 
any risk or driving them so hard that they burn out. 

Curiously, a lot of software development organizations start out wanting to build high rises but 
approach the problem as if they were knocking out a dog house. 



Sometimes, you get lucky. If you have the right people at the right moment and if all the planets 
align properly, then you might, just might, get your team to push out a software product that 
dazzles its users. Typically, however, you can't get all the right people (the right ones are often 
already overcommitted), it's never the right moment (yesterday would have been better), and the 
planets never seem to align (instead, they keep moving out of your control). Given the increasing 
demand to develop software in Internet time, development teams often fall back on the only thing 
they really know how to do well• pound out lines of code. Heroic programming efforts are legend 
in this industry, and it often seems that working harder is the proper reaction to any crisis in 
development. However, these are not necessarily the right lines of code, and some projects are 
of such a magnitude that even adding more hours to the work day is not enough to get the job 
done. 

If you really want to build the software equivalent of a house or a high rise, the problem is more 
than just a matter of writing lots of software• in fact, the trick is in creating the right software and 
in figuring out how to write less software. This makes quality software development an issue of 
architecture and process and tools. Even so, many projects start out looking like dog houses but 
grow to the magnitude of a high rise simply because they are a victim of their own success. There 
comes a time when, if there was no consideration given to architecture, process, or tools, that the 
dog house, now grown into a high rise, collapses of its own weight. The collapse of a dog house 
may annoy your dog; the failure of a high rise will materially affect its tenants. 

Unsuccessful software projects fail in their own unique ways, but all successful projects are alike 
in many ways. There are many elements that contribute to a successful software organization; 
one common thread is the use of modeling. 

Modeling is a proven and well-accepted engineering technique. We build architectural models of 
houses and high rises to help their users visualize the final product. We may even build 
mathematical models in order to analyze the effects of winds or earthquakes on our buildings. 

Modeling is not just a part of the building industry. It would be inconceivable to deploy a new 
aircraft or an automobile without first building models• from computer models to physical wind 
tunnel models to full-scale prototypes. New electrical devices, from microprocessors to telephone 
switching systems require some degree of modeling in order to better understand the system and 
to communicate those ideas to others. In the motion picture industry, storyboarding, which is a 
form of modeling, is central to any production. In the fields of sociology, economics, and business 
management, we build models so that we can validate our theories or try out new ones with 
minimal risk and cost. 

What, then, is a model? Simply put, 

A model is a simplification of reality. 

A model provides the blueprints of a system. Models may encompass detailed plans, as well as 
more general plans that give a 30,000-foot view of the system under consideration. A good model 
includes those elements that have broad effect and omits those minor elements that are not 
relevant to the given level of abstraction. Every system may be described from different aspects 
using different models, and each model is therefore a semantically closed abstraction of the 
system. A model may be structural, emphasizing the organization of the system, or it may be 
behavioral, emphasizing the dynamics of the system. 

Why do we model? There is one fundamental reason. 

We build models so that we can better understand the system we are 
developing. 

Through modeling, we achieve four aims. 



How the UML addresses these four things is discussed in Chapter 2. 

1. Models help us to visualize a system as it is or as we want it to be. 

2. Models permit us to specify the structure or behavior of a system. 

3. Models give us a template that guides us in constructing a system. 

4. Models document the decisions we have made. 

Modeling is not just for big systems. Even the software equivalent of a dog house can benefit 
from some modeling. However, it's definitely true that the larger and more complex the system, 
the more important modeling becomes, for one very simple reason: 

We build models of complex systems because we cannot comprehend such a 
system in its entirety. 

There are limits to the human ability to understand complexity. Through modeling, we narrow the 
problem we are studying by focusing on only one aspect at a time. This is essentially the 
approach of "divide-and-conquer" that Edsger Dijkstra spoke of years ago: Attack a hard problem 
by dividing it into a series of smaller problems that you can solve. Furthermore, through modeling, 
we amplify the human intellect. A model properly chosen can enable the modeler to work at 
higher levels of abstraction. 

Saying that one ought to model does not necessarily make it so. In fact, a number of studies 
suggest that most software organizations do little if any formal modeling. Plot the use of modeling 
against the complexity of a project, and you'll find that the simpler the project, the less likely it is 
that formal modeling will be used. 

The operative word here is "formal." In reality, in even the simplest project, developers do some 
amount of modeling, albeit very informally. A developer might sketch out an idea on a blackboard 
or a scrap of paper in order to visualize a part of a system, or the team might use CRC cards to 
work through a scenario or the design of a mechanism. There's nothing wrong with any of these 
models. If it works, by all means use it. However, these informal models are often ad hoc and do 
not provide a common language that can easily be shared with others. Just as there exists a 
common language of blueprints for the construction industry, a common language for electrical 
engineering, and a common language for mathematical modeling, so too can a development 
organization benefit by using a common language for software modeling. 

Every project can benefit from some modeling. Even in the realm of disposable software, where 
it's sometimes more effective to throw away inadequate software because of the productivity 
offered by visual programming languages, modeling can help the development team better 
visualize the plan of their system and allow them to develop more rapidly by helping them build 
the right thing. The more complex your project, the more likely it is that you will fail or that you will 
build the wrong thing if you do no modeling at all. All interesting and useful systems have a 
natural tendency to become more complex over time. So, although you might think you don't 
need to model today, as your system evolves you will regret that decision, after it is too late. 

Principles of Modeling 
The use of modeling has a rich history in all the engineering disciplines. That experience 
suggests four basic principles of modeling. First, 

The choice of what models to create has a profound influence on how a problem 
is attacked and how a solution is shaped. 



In other words, choose your models well. The right models will brilliantly illuminate the most 
wicked development problems, offering insight that you simply could not gain otherwise; the 
wrong models will mislead you, causing you to focus on irrelevant issues. 

Setting aside software for a moment, suppose you are trying to tackle a problem in quantum 
physics. Certain problems, such as the interaction of photons in time-space, are full of 
wonderfully hairy mathematics. Choose a different model than the calculus, and all of a sudden 
this inherent complexity becomes tractable. In this field, this is precisely the value of Feynmann 
diagrams, which provide a graphical rendering of a very complex problem. Similarly, in a totally 
different domain, suppose you are constructing a new building and you are concerned about how 
it might behave in high winds. If you build a physical model and then subject it to wind tunnel 
tests, you might learn some interesting things, although materials in the small don't flex exactly as 
they do in the large. Hence, if you build a mathematical model and then subject it to simulations, 
you will learn some different things, and you will also probably be able to play with more new 
scenarios than if you were using a physical model. By rigorously and continuously testing your 
models, you'll end up with a far higher level of confidence that the system you have modeled will, 
in fact, behave as you expect it to in the real world. 

In software, the models you choose can greatly affect your world view. If you build a system 
through the eyes of a database developer, you will likely focus on entity-relationship models that 
push behavior into triggers and stored procedures. If you build a system through the eyes of a 
structured analyst, you will likely end up with models that are algorithmic-centric, with data flowing 
from process to process. If you build a system through the eyes of an object-oriented developer, 
you'll end up with a system whose architecture is centered around a sea of classes and the 
patterns of interaction that direct how those classes work together. Any of these approaches 
might be right for a given application and development culture, although experience suggests that 
the object-oriented view is superior in crafting resilient architectures, even for systems that might 
have a large database or computational element. That fact notwithstanding, the point is that each 
world view leads to a different kind of system, with different costs and benefits. 

Second, 

Every model may be expressed at different levels of precision. 

If you are building a high rise, sometimes you need a 30,000-foot view• for instance, to help your 
investors visualize its look and feel. Other times, you need to get down to the level of the studs•
for instance, when there's a tricky pipe run or an unusual structural element. 

The same is true with software models. Sometimes, a quick and simple executable model of the 
user interface is exactly what you need; at other times, you have to get down and dirty with the 
bits, such as when you are specifying cross-system interfaces or wrestling with networking 
bottlenecks. In any case, the best kinds of models are those that let you choose your degree of 
detail, depending on who is doing the viewing and why they need to view it. An analyst or an end 
user will want to focus on issues of what; a developer will want to focus on issues of how. Both of 
these stakeholders will want to visualize a system at different levels of detail at different times. 

Third, 

The best models are connected to reality. 

A physical model of a building that doesn't respond in the same way as do real materials has only 
limited value; a mathematical model of an aircraft that assumes only ideal conditions and perfect 
manufacturing can mask some potentially fatal characteristics of the real aircraft. It's best to have 
models that have a clear connection to reality, and where that connection is weak, to know 
exactly how those models are divorced from the real world. All models simplify reality; the trick is 
to be sure that your simplifications don't mask any important details. 



In software, the Achilles heel of structured analysis techniques is the fact that there is a basic 
disconnect between its analysis model and the system's design model. Failing to bridge this 
chasm causes the system as conceived and the system as built to diverge over time. In object-
oriented systems, it is possible to connect all the nearly independent views of a system into one 
semantic whole. 

Fourth, 

No single model is sufficient. Every nontrivial system is best approached through 
a small set of nearly independent models. 

If you are constructing a building, there is no single set of blueprints that reveal all its details. At 
the very least, you'll need floor plans, elevations, electrical plans, heating plans, and plumbing 
plans. 

The operative phrase here is "nearly independent." In this context, it means having models that 
can be built and studied separately but that are still interrelated. As in the case of a building, you 
can study electrical plans in isolation, but you can also see their mapping to the floor plan and 
perhaps even their interaction with the routing of pipes in the plumbing plan. 

The five views of an architecture are discussed in Chapter 2. 

The same is true of object-oriented software systems. To understand the architecture of such a 
system, you need several complementary and interlocking views: a use case view (exposing the 
requirements of the system), a design view (capturing the vocabulary of the problem space and 
the solution space), a process view (modeling the distribution of the system's processes and 
threads), an implementation view (addressing the physical realization of the system), and a 
deployment view (focusing on system engineering issues). Each of these views may have 
structural, as well as behavioral, aspects. Together, these views represent the blueprints of 
software. 

Depending on the nature of the system, some models may be more important than others. For 
example, in data-intensive systems, models addressing static design views will dominate. In GUI-
intensive systems, static and dynamic use case views are quite important. In hard real time 
systems, dynamic process views tend to be more important. Finally, in distributed systems, such 
as one finds in Web-intensive applications, implementation and deployment models are the most 
important. 

Object-Oriented Modeling 
Civil engineers build many kinds of models. Most commonly, there are structural models that help 
people visualize and specify parts of systems and the way those parts relate to one another. 
Depending on the most important business or engineering concerns, engineers might also build 
dynamic models•  for instance, to help them to study the behavior of a structure in the presence 
of an earthquake. Each kind of model is organized differently, and each has its own focus. 

In software, there are several ways to approach a model. The two most common ways are from 
an algorithmic perspective and from an object-oriented perspective. 

The traditional view of software development takes an algorithmic perspective. In this approach, 
the main building block of all software is the procedure or function. This view leads developers to 
focus on issues of control and the decomposition of larger algorithms into smaller ones. There's 
nothing inherently evil about such a point of view except that it tends to yield brittle systems. As 
requirements change (and they will) and the system grows (and it will), systems built with an 
algorithmic focus turn out to be very hard to maintain. 



The contemporary view of software development takes an object-oriented perspective. In this 
approach, the main building block of all software systems is the object or class. Simply put, an 
object is a thing, generally drawn from the vocabulary of the problem space or the solution space; 
a class is a description of a set of common objects. Every object has identity (you can name it or 
otherwise distinguish it from other objects), state (there's generally some data associated with it), 
and behavior (you can do things to the object, and it can do things to other objects, as well). 

For example, consider a simple three-tier architecture for a billing system, involving a user 
interface, middleware, and a database. In the user interface, you will find concrete objects, such 
as buttons, menus, and dialog boxes. In the database, you will find concrete objects, such as 
tables representing entities from the problem domain, including customers, products, and orders. 
In the middle layer, you will find objects such as transactions and business rules, as well as 
higher-level views of problem entities, such as customers, products, and orders. 

The object-oriented approach to software development is decidedly a part of the mainstream 
simply because it has proven to be of value in building systems in all sorts of problem domains 
and encompassing all degrees of size and complexity. Furthermore, most contemporary 
languages, operating systems, and tools are object-oriented in some fashion, giving greater 
cause to view the world in terms of objects. Object-oriented development provides the conceptual 
foundation for assembling systems out of components using technology such as Java Beans or 
COM+. 

These questions are discussed in Chapter 2. 

A number of consequences flow from the choice of viewing the world in an object-oriented 
fashion: What's the structure of a good object-oriented architecture? What artifacts should the 
project create? Who should create them? How should they be measured? 

Visualizing, specifying, constructing, and documenting object-oriented systems is exactly the 
purpose of the Unified Modeling Language. 

Chapter 2. Introducing the UML 
In this chapter 

• Overview of the UML 

• Three steps to understanding the UML 

• Software architecture 

• The software development process 

The Unified Modeling Language (UML) is a standard language for writing software blueprints. The 
UML may be used to visualize, specify, construct, and document the artifacts of a software-
intensive system. 

The UML is appropriate for modeling systems ranging from enterprise information systems to 
distributed Web-based applications and even to hard real time embedded systems. It is a very 
expressive language, addressing all the views needed to develop and then deploy such systems. 
Even though it is expressive, the UML is not difficult to understand and to use. Learning to apply 
the UML effectively starts with forming a conceptual model of the language, which requires 
learning three major elements: the UML's basic building blocks, the rules that dictate how these 
building blocks may be put together, and some common mechanisms that apply throughout the 
language. 



The UML is only a language and so is just one part of a software development method. The UML 
is process independent, although optimally it should be used in a process that is use case driven, 
architecture-centric, iterative, and incremental. 

An Overview of the UML 
The UML is a language for 

• Visualizing 

• Specifying 

• Constructing 

• Documenting 

the artifacts of a software-intensive system. 

The UML Is a Language 

A language provides a vocabulary and the rules for combining words in that vocabulary for the 
purpose of communication. A modeling language is a language whose vocabulary and rules 
focus on the conceptual and physical representation of a system. A modeling language such as 
the UML is thus a standard language for software blueprints. 

The basic principles of modeling are discussed in Chapter 1. 

Modeling yields an understanding of a system. No one model is ever sufficient. Rather, you often 
need multiple models that are connected to one another in order to understand anything but the 
most trivial system. For software- intensive systems, this requires a language that addresses the 
different views of a system's architecture as it evolves throughout the software development life 
cycle. 

The vocabulary and rules of a language such as the UML tell you how to create and read well-
formed models, but they don't tell you what models you should create and when you should 
create them. That's the role of the software development process. A well-defined process will 
guide you in deciding what artifacts to produce, what activities and what workers to use to create 
them and manage them, and how to use those artifacts to measure and control the project as a 
whole. 

The UML Is a Language for Visualizing 

For many programmers, the distance between thinking of an implementation and then pounding it 
out in code is close to zero. You think it, you code it. In fact, some things are best cast directly in 
code. Text is a wonderfully minimal and direct way to write expressions and algorithms. 

In such cases, the programmer is still doing some modeling, albeit entirely mentally. He or she 
may even sketch out a few ideas on a white board or on a napkin. However, there are several 
problems with this. First, communicating those conceptual models to others is error-prone unless 
everyone involved speaks the same language. Typically, projects and organizations develop their 
own language, and it is difficult to understand what's going on if you are an outsider or new to the 
group. Second, there are some things about a software system you can't understand unless you 
build models that transcend the textual programming language. For example, the meaning of a 
class hierarchy can be inferred, but not directly grasped, by staring at the code for all the classes 
in the hierarchy. Similarly, the physical distribution and possible migration of the objects in a Web-
based system can be inferred, but not directly grasped, by studying the system's code. Third, if 
the developer who cut the code never wrote down the models that are in his or her head, that 



information would be lost forever or, at best, only partially recreatable from the implementation, 
once that developer moved on. 

Writing models in the UML addresses the third issue: An explicit model facilitates communication. 

Some things are best modeled textually; others are best modeled graphically. Indeed, in all 
interesting systems, there are structures that transcend what can be represented in a 
programming language. The UML is such a graphical language. This addresses the second 
problem described earlier. 

The complete semantics of the UML are discussed in The Unified Modeling Language Reference 
Manual. 

The UML is more than just a bunch of graphical symbols. Rather, behind each symbol in the UML 
notation is a well-defined semantics. In this manner, one developer can write a model in the UML, 
and another developer, or even another tool, can interpret that model unambiguously. This 
addresses the first issue described earlier. 

The UML Is a Language for Specifying 

In this context, specifying means building models that are precise, unambiguous, and complete. 
In particular, the UML addresses the specification of all the important analysis, design, and 
implementation decisions that must be made in developing and deploying a software-intensive 
system. 

The UML Is a Language for Constructing 

The UML is not a visual programming language, but its models can be directly connected to a 
variety of programming languages. This means that it is possible to map from a model in the UML 
to a programming language such as Java, C++, or Visual Basic, or even to tables in a relational 
database or the persistent store of an object-oriented database. Things that are best expressed 
graphically are done so graphically in the UML, whereas things that are best expressed textually 
are done so in the programming language. 

Modeling the structure of a system is discussed in Sections 2 and 3. 

This mapping permits forward engineering: The generation of code from a UML model into a 
programming language. The reverse is also possible: You can reconstruct a model from an 
implementation back into the UML. Reverse engineering is not magic. Unless you encode that 
information in the implementation, information is lost when moving forward from models to code. 
Reverse engineering thus requires tool support with human intervention. Combining these two 
paths of forward code generation and reverse engineering yields round-trip engineering, meaning 
the ability to work in either a graphical or a textual view, while tools keep the two views 
consistent. 

Modeling the behavior of a system is discussed in Sections 4 and 5. 

In addition to this direct mapping, the UML is sufficiently expressive and unambiguous to permit 
the direct execution of models, the simulation of systems, and the instrumentation of running 
systems. 

The UML Is a Language for Documenting 

A healthy software organization produces all sorts of artifacts in addition to raw executable code. 
These artifacts include (but are not limited to) 

• Requirements 



• Architecture 

• Design 

• Source code 

• Project plans 

• Tests 

• Prototypes 

• Releases 

Depending on the development culture, some of these artifacts are treated more or less formally 
than others. Such artifacts are not only the deliverables of a project, they are also critical in 
controlling, measuring, and communicating about a system during its development and after its 
deployment. 

The UML addresses the documentation of a system's architecture and all of its details. The UML 
also provides a language for expressing requirements and for tests. Finally, the UML provides a 
language for modeling the activities of project planning and release management. 

Where Can the UML Be Used? 

The UML is intended primarily for software-intensive systems. It has been used effectively for 
such domains as 

• Enterprise information systems 

• Banking and financial services 

• Telecommunications 

• Transportation 

• Defense/aerospace 

• Retail 

• Medical electronics 

• Scientific 

• Distributed Web-based services 

The UML is not limited to modeling software. In fact, it is expressive enough to model 
nonsoftware systems, such as workflow in the legal system, the structure and behavior of a 
patient healthcare system, and the design of hardware. 

A Conceptual Model of the UML 
To understand the UML, you need to form a conceptual model of the language, and this requires 
learning three major elements: the UML's basic building blocks, the rules that dictate how those 
building blocks may be put together, and some common mechanisms that apply throughout the 
UML. Once you have grasped these ideas, you will be able to read UML models and create some 



basic ones. As you gain more experience in applying the UML, you can build on this conceptual 
model, using more advanced features of the language. 

Building Blocks of the UML 

The vocabulary of the UML encompasses three kinds of building blocks: 

1. Things 

2. Relationships 

3. Diagrams 

Things are the abstractions that are first-class citizens in a model; relationships tie these things 
together; diagrams group interesting collections of things. 

Things in the UML   

There are four kinds of things in the UML: 

1. Structural things 

2. Behavioral things 

3. Grouping things 

4. Annotational things 

These things are the basic object-oriented building blocks of the UML. You use them to write well-
formed models. 

Structural Things   

Structural things are the nouns of UML models. These are the mostly static parts of a model, 
representing elements that are either conceptual or physical. In all, there are seven kinds of 
structural things. 

Classes are discussed in Chapters 4and 9. 

First, a class is a description of a set of objects that share the same attributes, operations, 
relationships, and semantics. A class implements one or more interfaces. Graphically, a class is 
rendered as a rectangle, usually including its name, attributes, and operations, as in Figure 2-1. 

Figure 2-1 Classes 



 
Interfaces are discussed in Chapter 11. 

Second, an interface is a collection of operations that specify a service of a class or component. 
An interface therefore describes the externally visible behavior of that element. An interface might 
represent the complete behavior of a class or component or only a part of that behavior. An 
interface defines a set of operation specifications (that is, their signatures) but never a set of 
operation implementations. Graphically, an interface is rendered as a circle together with its 
name. An interface rarely stands alone. Rather, it is typically attached to the class or component 
that realizes the interface, as in Figure 2-2. 

Figure 2-2 Interfaces 

 
Collaborations are discussed in Chapter 27. 

Third, a collaboration defines an interaction and is a society of roles and other elements that work 
together to provide some cooperative behavior that's bigger than the sum of all the elements. 
Therefore, collaborations have structural, as well as behavioral, dimensions. A given class might 
participate in several collaborations. These collaborations therefore represent the implementation 
of patterns that make up a system. Graphically, a collaboration is rendered as an ellipse with 
dashed lines, usually including only its name, as in Figure 2-3. 

Figure 2-3 Collaborations 



 
Use cases are discussed in Chapter 16. 

Fourth, a use case is a description of set of sequence of actions that a system performs that 
yields an observable result of value to a particular actor. A use case is used to structure the 
behavioral things in a model. A use case is realized by a collaboration. Graphically, a use case is 
rendered as an ellipse with solid lines, usually including only its name, as in Figure 2-4. 

Figure 2-4 Use Cases 

 
The remaining three things• active classes, components, and nodes• are all class-like, meaning 
they also describe a set of objects that share the same attributes, operations, relationships, and 
semantics. However, these three are different enough and are necessary for modeling certain 
aspects of an object-oriented system, and so they warrant special treatment. 

Active classes are discussed in Chapter 22. 

Fifth, an active class is a class whose objects own one or more processes or threads and 
therefore can initiate control activity. An active class is just like a class except that its objects 
represent elements whose behavior is concurrent with other elements. Graphically, an active 
class is rendered just like a class, but with heavy lines, usually including its name, attributes, and 
operations, as in Figure 2-5. 

Figure 2-5 Active Classes 

 
The remaining two elements• component, and nodes• are also different. They represent 
physical things, whereas the previous five things represent conceptual or logical things. 



Components are discussed in Chapter 25. 

Sixth, a component is a physical and replaceable part of a system that conforms to and provides 
the realization of a set of interfaces. In a system, you'll encounter different kinds of deployment 
components, such as COM+ components or Java Beans, as well as components that are artifacts 
of the development process, such as source code files. A component typically represents the 
physical packaging of otherwise logical elements, such as classes, interfaces, and collaborations. 
Graphically, a component is rendered as a rectangle with tabs, usually including only its name, as 
in Figure 2-6. 

Figure 2-6 Components 

 
Nodes are discussed in Chapter 26. 

Seventh, a node is a physical element that exists at run time and represents a computational 
resource, generally having at least some memory and, often, processing capability. A set of 
components may reside on a node and may also migrate from node to node. Graphically, a node 
is rendered as a cube, usually including only its name, as in Figure 2-7. 

Figure 2-7 Nodes 

 
These seven elements• classes, interfaces, collaborations, use cases, active classes, 
components, and nodes• are the basic structural things that you may include in a UML model. 
There are also variations on these seven, such as actors, signals, and utilities (kinds of classes), 
processes and threads (kinds of active classes), and applications, documents, files, libraries, 
pages, and tables (kinds of components). 

Use cases, which are used to structure the behavioral things in a model, are discussed in 
Chapter 16; Interactions are discussed in Chapter 15. 

Behavioral Things   



Behavioral things are the dynamic parts of UML models. These are the verbs of a model, 
representing behavior over time and space. In all, there are two primary kinds of behavioral 
things. 

First, an interaction is a behavior that comprises a set of messages exchanged among a set of 
objects within a particular context to accomplish a specific purpose. The behavior of a society of 
objects or of an individual operation may be specified with an interaction. An interaction involves 
a number of other elements, including messages, action sequences (the behavior invoked by a 
message), and links (the connection between objects). Graphically, a message is rendered as a 
directed line, almost always including the name of its operation, as in Figure 2-8. 

Figure 2-8 Messages 

 
State machines are discussed in Chapter 21. 

Second, a state machine is a behavior that specifies the sequences of states an object or an 
interaction goes through during its lifetime in response to events, together with its responses to 
those events. The behavior of an individual class or a collaboration of classes may be specified 
with a state machine. A state machine involves a number of other elements, including states, 
transitions (the flow from state to state), events (things that trigger a transition), and activities (the 
response to a transition). Graphically, a state is rendered as a rounded rectangle, usually 
including its name and its substates, if any, as in Figure 2-9. 

Figure 2-9 States 

 
These two elements• interactions and state machines• are the basic behavioral things that you 
may include in a UML model. Semantically, these elements are usually connected to various 
structural elements, primarily classes, collaborations, and objects. 

Grouping Things   

Grouping things are the organizational parts of UML models. These are the boxes into which a 
model can be decomposed. In all, there is one primary kind of grouping thing, namely, packages. 

Packages are discussed in Chapter 12. 

A package is a general-purpose mechanism for organizing elements into groups. Structural 
things, behavioral things, and even other grouping things may be placed in a package. Unlike 
components (which exist at run time), a package is purely conceptual (meaning that it exists only 
at development time). Graphically, a package is rendered as a tabbed folder, usually including 
only its name and, sometimes, its contents, as in Figure 2-10. 



Figure 2-10 Packages 

 
Packages are the basic grouping things with which you may organize a UML model. There are 
also variations, such as frameworks, models, and subsystems (kinds of packages). 

Notes are discussed in Chapter 6. 

Annotational Things   

Annotational thingsare the explanatory parts of UML models. These are the comments you may 
apply to describe, illuminate, and remark about any element in a model. There is one primary kind 
of annotational thing, called a note. A note is simply a symbol for rendering constraints and 
comments attached to an element or a collection of elements. Graphically, a note is rendered as 
a rectangle with a dog-eared corner, together with a textual or graphical comment, as in Figure 
2-11. 

Figure 2-11 Notes 

 
This element is the one basic annotational thing you may include in a UML model. You'll typically 
use notes to adorn your diagrams with constraints or comments that are best expressed in 
informal or formal text. There are also variations on this element, such as requirements (which 
specify some desired behavior from the perspective of outside the model). 

Relationships in the UML    

There are four kinds of relationships in the UML: 

1. Dependency 

2. Association 

3. Generalization 

4. Realization 

These relationships are the basic relational building blocks of the UML. You use them to write 
well-formed models. 



Dependencies are discussed in Chapters 5 and 10. 

First, a dependency is a semantic relationship between two things in which a change to one thing 
(the independent thing) may affect the semantics of the other thing (the dependent thing). 
Graphically, a dependency is rendered as a dashed line, possibly directed, and occasionally 
including a label, as in Figure 2-12. 

Figure 2-12 Dependencies 

 
Associations are discussed in Chapters 5 and 10. 

Second, an association is a structural relationship that describes a set of links, a link being a 
connection among objects. Aggregation is a special kind of association, representing a structural 
relationship between a whole and its parts. Graphically, an association is rendered as a solid line, 
possibly directed, occasionally including a label, and often containing other adornments, such as 
multiplicity and role names, as in Figure 2-13. 

Figure 2-13 Associations 

 
Generalizations are discussed in Chapters 5 and 10. 

Third, a generalization is a specialization/generalization relationship in which objects of the 
specialized element (the child) are substitutable for objects of the generalized element (the 
parent). In this way, the child shares the structure and the behavior of the parent. Graphically, a 
generalization relationship is rendered as a solid line with a hollow arrowhead pointing to the 
parent, as in Figure 2-14. 

Figure 2-14 Generalizations 

 
Realizations are discussed in Chapter 10. 

Fourth, a realization is a semantic relationship between classifiers, wherein one classifier 
specifies a contract that another classifier guarantees to carry out. You'll encounter realization 
relationships in two places: between interfaces and the classes or components that realize them, 
and between use cases and the collaborations that realize them. Graphically, a realization 
relationship is rendered as a cross between a generalization and a dependency relationship, as in 
Figure 2-15. 

Figure 2-15 Realization 

 
These four elements are the basic relational things you may include in a UML model. There are 
also variations on these four, such as refinement, trace, include, and extend (for dependencies). 



The five views of an architecture are discussed in the following section. 

Diagrams in the UML    

A diagram is the graphical presentation of a set of elements, most often rendered as a connected 
graph of vertices (things) and arcs (relationships). You draw diagrams to visualize a system from 
different perspectives, so a diagram is a projection into a system. For all but the most trivial 
systems, a diagram represents an elided view of the elements that make up a system. The same 
element may appear in all diagrams, only a few diagrams (the most common case), or in no 
diagrams at all (a very rare case). In theory, a diagram may contain any combination of things 
and relationships. In practice, however, a small number of common combinations arise, which are 
consistent with the five most useful views that comprise the architecture of a software-intensive 
system. For this reason, the UML includes nine such diagrams: 

1. Class diagram 

2. Object diagram 

3. Use case diagram 

4. Sequence diagram 

5. Collaboration diagram 

6. Statechart diagram 

7. Activity diagram 

8. Component diagram 

9. Deployment diagram 

Class diagrams are discussed in Chapter 8. 

A class diagram shows a set of classes, interfaces, and collaborations and their relationships. 
These diagrams are the most common diagram found in modeling object-oriented systems. Class 
diagrams address the static design view of a system. Class diagrams that include active classes 
address the static process view of a system. 

Object diagrams are discussed in Chapter 14 

An object diagram shows a set of objects and their relationships. Object diagrams represent static 
snapshots of instances of the things found in class diagrams. These diagrams address the static 
design view or static process view of a system as do class diagrams, but from the perspective of 
real or prototypical cases. 

Use case diagrams are discussed in Chapter 17. 

A use case diagram shows a set of use cases and actors (a special kind of class) and their 
relationships. Use case diagrams address the static use case view of a system. These diagrams 
are especially important in organizing and modeling the behaviors of a system. 

Interaction diagrams are discussed in Chapter 18. 

Both sequence diagrams and collaboration diagrams are kinds of interaction diagrams. An shows 
an interaction, consisting of a set of objects and their relationships, including the messages that 
may be dispatched among them. Interaction diagrams address the dynamic view of a system. A 
sequence diagram is an interaction diagram that emphasizes the time-ordering of messages; a 



collaboration diagram is an interaction diagram that emphasizes the structural organization of the 
objects that send and receive messages. Sequence diagrams and collaboration diagrams are 
isomorphic, meaning that you can take one and transform it into the other. 

Statechart diagrams are discussed in Chapter 24. 

A statechart diagram shows a state machine, consisting of states, transitions, events, and 
activities. Statechart diagrams address the dynamic view of a system. They are especially 
important in modeling the behavior of an interface, class, or collaboration and emphasize the 
event-ordered behavior of an object, which is especially useful in modeling reactive systems. 

Activity diagrams are discussed in Chapter 19. 

An activity diagram is a special kind of a statechart diagram that shows the flow from activity to 
activity within a system. Activity diagrams address the dynamic view of a system. They are 
especially important in modeling the function of a system and emphasize the flow of control 
among objects. 

Component diagrams are discussed in Chapter 29. 

A component diagram shows the organizations and dependencies among a set of components. 
Component diagrams address the static implementation view of a system. They are related to 
class diagrams in that a component typically maps to one or more classes, interfaces, or 
collaborations. 

Deployment diagrams are discussed in Chapter 30. 

A deployment diagram shows the configuration of run-time processing nodes and the 
components that live on them. Deployment diagrams address the static deployment view of an 
architecture. They are related to component diagrams in that a node typically encloses one or 
more components. 

This is not a closed list of diagrams. Tools may use the UML to provide other kinds of diagrams, 
although these nine are by far the most common you will encounter in practice. 

Rules of the UML 

The UML's building blocks can't simply be thrown together in a random fashion. Like any 
language, the UML has a number of rules that specify what a well-formed model should look like. 
A well-formed model is one that is semantically self-consistent and in harmony with all its related 
models. 

The UML has semantic rules for 

� Names  What you can call things, relationships, and diagrams 
� Scope  The context that gives specific meaning to a name 
� Visibility  How those names can be seen and used by others 
� Integrity  How things properly and consistently relate to one another 
� Execution  What it means to run or simulate a dynamic model 
Models built during the development of a software-intensive system tend to evolve and may be 
viewed by many stakeholders in different ways and at different times. For this reason, it is 
common for the development team to not only build models that are well-formed, but also to build 
models that are 

� Elided Certain elements are hidden to simplify the view 
� Incomplete Certain elements may be missing 



� Inconsistent The integrity of the model is not guaranteed 
These less-than-well-formed models are unavoidable as the details of a system unfold and churn 
during the software development life cycle. The rules of the UML encourage you• but do not 
force you• to address the most important analysis, design, and implementation questions that 
push such models to become well-formed over time. 

Common Mechanisms in the UML 

A building is made simpler and more harmonious by the conformance to a pattern of common 
features. A house may be built in the Victorian or French country style largely by using certain 
architectural patterns that define those styles. The same is true of the UML. It is made simpler by 
the presence of four common mechanisms that apply consistently throughout the language. 

1. Specifications 

2. Adornments 

3. Common divisions 

4. Extensibility mechanisms 

Specifications    

The UML is more than just a graphical language. Rather, behind every part of its graphical 
notation there is a specification that provides a textual statement of the syntax and semantics of 
that building block. For example, behind a class icon is a specification that provides the full set of 
attributes, operations (including their full signatures), and behaviors that the class embodies; 
visually, that class icon might only show a small part of this specification. Furthermore, there 
might be another view of that class that presents a completely different set of parts yet is still 
consistent with the class's underlying specification. You use the UML's graphical notation to 
visualize a system; you use the UML's specification to state the system's details. Given this split, 
it's possible to build up a model incrementally by drawing diagrams and then adding semantics to 
the model's specifications, or directly by creating a specification, perhaps by reverse engineering 
an existing system, and then creating diagrams that are projections into those specifications. 

The UML's specifications provide a semantic backplane that contains all the parts of all the 
models of a system, each part related to one another in a consistent fashion. The UML's 
diagrams are thus simply visual projections into that backplane, each diagram revealing a specific 
interesting aspect of the system. 

Notes and other adornments are discussed in Chapter 6. 

Adornments    

Most elements in the UML have a unique and direct graphical notation that provides a visual 
representation of the most important aspects of the element. For example, the notation for a class 
is intentionally designed to be easy to draw, because classes are the most common element 
found in modeling object-oriented systems. The class notation also exposes the most important 
aspects of a class, namely its name, attributes, and operations. 

A class's specification may include other details, such as whether it is abstract or the visibility of 
its attributes and operations. Many of these details can be rendered as graphical or textual 
adornments to the class's basic rectangular notation. For example, Figure 2-16 shows a class, 
adorned to indicate that it is an abstract class with two public, one protected, and one private 
operation. 

Figure 2-16 Adornments 



 
Every element in the UML's notation starts with a basic symbol, to which can be added a variety 
of adornments specific to that symbol. 

Common Divisions   

In modeling object-oriented systems, the world often gets divided in at least a couple of ways. 

Objects are discussed in Chapter 13. 

First, there is the division of class and object. A class is an abstraction; an object is one concrete 
manifestation of that abstraction. In the UML, you can model classes as well as objects, as shown 
in Figure 2-17. 

Figure 2-17 Classes And Objects 

 
In this figure, there is one class, named Customer, together with three objects: Jan (which is 
marked explicitly as being a Customer object), :Customer (an anonymous Customer object), 
and Elyse (which in its specification is marked as being a kind of Customer object, although it's 
not shown explicitly here). 

Almost every building block in the UML has this same kind of class/object dichotomy. For 
example, you can have use cases and use case instances, components and component 
instances, nodes and node instances, and so on. Graphically, the UML distinguishes an object by 
using the same symbol as its class and then simply underlying the object's name. 

Interfaces are discussed in Chapter 11. 



Second, there is the separation of interface and implementation. An interface declares a contract, 
and an implementation represents one concrete realization of that contract, responsible for 
faithfully carrying out the interface's complete semantics. In the UML, you can model both 
interfaces and their implementations, as shown in Figure 2-18. 

Figure 2-18 Interfaces And Implementations 

 
In this figure, there is one component named spellingwizard.dll that implements two 
interfaces, IUnknown and ISpelling. 

Almost every building block in the UML has this same kind of interface/ implementation 
dichotomy. For example, you can have use cases and the collaborations that realize them, as 
well as operations and the methods that implement them. 

The UML's extensibility mechanisms are discussed in Chapter 6. 

Extensibility Mechanisms    

The UML provides a standard language for writing software blueprints, but it is not possible for 
one closed language to ever be sufficient to express all possible nuances of all models across all 
domains across all time. For this reason, the UML is opened-ended, making it possible for you to 
extend the language in controlled ways. The UML's extensibility mechanisms include 

• Stereotypes 

• Tagged values 

• Constraints 

A stereotype extends the vocabulary of the UML, allowing you to create new kinds of building 
blocks that are derived from existing ones but that are specific to your problem. For example, if 
you are working in a programming language, such as Java or C++, you will often want to model 
exceptions. In these languages, exceptions are just classes, although they are treated in very 
special ways. Typically, you only want to allow them to be thrown and caught, nothing else. You 
can make exceptions first class citizens in your models• meaning that they are treated like basic 
building blocks• by marking them with an appropriate stereotype, as for the class Overflow in 
Figure 2-19. 

Figure 2-19 Extensibility Mechanisms 



 
A tagged value extends the properties of a UML building block, allowing you to create new 
information in that element's specification. For example, if you are working on a shrink-wrapped 
product that undergoes many releases over time, you often want to track the version and author 
of certain critical abstractions. Version and author are not primitive UML concepts. They can be 
added to any building block, such as a class, by introducing new tagged values to that building 
block. In Figure 2-19, for example, the class EventQueue is extended by marking its version 
and author explicitly. 

A constraint extends the semantics of a UML building block, allowing you to add new rules or 
modify existing ones. For example, you might want to constrain the EventQueue class so that all 
additions are done in order. As Figure 2-19 shows, you can add a constraint that explicitly 
marks these for the operation add. 

Collectively, these three extensibility mechanisms allow you to shape and grow the UML to your 
project's needs. These mechanisms also let the UML adapt to new software technology, such as 
the likely emergence of more powerful distributed programming languages. You can add new 
building blocks, modify the specification of existing ones, and even change their semantics. 
Naturally, it's important that you do so in controlled ways so that through these extensions, you 
remain true to the UML's purpose• the communication of information. 

Architecture 
The need for viewing complex systems from different perspectives is discussed in Chapter 1. 

Visualizing, specifying, constructing, and documenting a software-intensive system demands that 
the system be viewed from a number of perspectives. Different stakeholders• end users, 
analysts, developers, system integrators, testers, technical writers, and project managers• each 
bring different agendas to a project, and each looks at that system in different ways at different 
times over the project's life. A system's architecture is perhaps the most important artifact that 
can be used to manage these different viewpoints and so control the iterative and incremental 
development of a system throughout its life cycle. 

Architecture is the set of significant decisions about 

• The organization of a software system 

• The selection of the structural elements and their interfaces by which the system is 
composed 

• Their behavior, as specified in the collaborations among those elements 

• The composition of these structural and behavioral elements into progressively larger 
subsystems 



• The architectural style that guides this organization: the static and dynamic elements and 
their interfaces, their collaborations, and their composition 

Software architecture is not only concerned with structure and behavior, but also with usage, 
functionality, performance, resilience, reuse, comprehensibility, economic and technology 
constraints and trade-offs, and aesthetic concerns. 

Modeling the architecture of a system is discussed in Chapter 31. 

As Figure 2-20 illustrates, the architecture of a software-intensive system can best be described 
by five interlocking views. Each view is a projection into the organization and structure of the 
system, focused on a particular aspect of that system. 

Figure 2-20 Modeling a System's Architecture 

 
The use case view of a system encompasses the use cases that describe the behavior of the 
system as seen by its end users, analysts, and testers. This view doesn't really specify the 
organization of a software system. Rather, it exists to specify the forces that shape the system's 
architecture. With the UML, the static aspects of this view are captured in use case diagrams; the 
dynamic aspects of this view are captured in interaction diagrams, statechart diagrams, and 
activity diagrams. 

The design view of a system encompasses the classes, interfaces, and collaborations that form 
the vocabulary of the problem and its solution. This view primarily supports the functional 
requirements of the system, meaning the services that the system should provide to its end 
users. With the UML, the static aspects of this view are captured in class diagrams and object 
diagrams; the dynamic aspects of this view are captured in interaction diagrams, statechart 
diagrams, and activity diagrams. 

The process view of a system encompasses the threads and processes that form the system's 
concurrency and synchronization mechanisms. This view primarily addresses the performance, 
scalability, and throughput of the system. With the UML, the static and dynamic aspects of this 
view are captured in the same kinds of diagrams as for the design view, but with a focus on the 
active classes that represent these threads and processes. 

The implementation view of a system encompasses the components and files that are used to 
assemble and release the physical system. This view primarily addresses the configuration 
management of the system's releases, made up of somewhat independent components and files 
that can be assembled in various ways to produce a running system. With the UML, the static 
aspects of this view are captured in component diagrams; the dynamic aspects of this view are 
captured in interaction diagrams, statechart diagrams, and activity diagrams. 



The deployment view of a system encompasses the nodes that form the system's hardware 
topology on which the system executes. This view primarily addresses the distribution, delivery, 
and installation of the parts that make up the physical system. With the UML, the static aspects of 
this view are captured in deployment diagrams; the dynamic aspects of this view are captured in 
interaction diagrams, statechart diagrams, and activity diagrams. 

Each of these five views can stand alone so that different stakeholders can focus on the issues of 
the system's architecture that most concern them. These five views also interact with one 
another• nodes in the deployment view hold components in the implementation view that, in turn, 
represent the physical realization of classes, interfaces, collaborations, and active classes from 
the design and process views. The UML permits you to express every one of these five views and 
their interactions. 

Software Development Life Cycle 
The Rational Unified Process is summarized in Appendix C; a more complete treatment of this 
process is discussed in The Unified Software Development Process. 

The UML is largely process-independent, meaning that it is not tied to any particular software 
development life cycle. However, to get the most benefit from the UML, you should consider a 
process that is 

• Use case driven 

• Architecture-centric 

• Iterative and incremental 

Use case driven means that use cases are used as a primary artifact for establishing the desired 
behavior of the system, for verifying and validating the system's architecture, for testing, and for 
communicating among the stakeholders of the project. 

Architecture-centric means that a system's architecture is used as a primary artifact for 
conceptualizing, constructing, managing, and evolving the system under development. 

An iterative process is one that involves managing a stream of executable releases. An is one 
that involves the continuous integration of the system's architecture to produce these releases, 
with each new release embodying incremental improvements over the other. Together, an 
iterative and incremental process is risk-driven, meaning that each new release is focused on 
attacking and reducing the most significant risks to the success of the project. 

This use case driven, architecture-centric, and iterative/incremental process can be broken into 
phases. A phase is the span of time between two major milestones of the process, when a well-
defined set of objectives are met, artifacts are completed, and decisions are made whether to 
move into the next phase. As Figure 2-21 shows, there are four phases in the software 
development life cycle: inception, elaboration, construction, and transition. In the diagram, 
workflows are plotted against these phases, showing their varying degrees of focus over time. 

Figure 2-21 Software Development Life Cycle 



 
Inception is the first phase of the process, when the seed idea for the development is brought up 
to the point of being• at least internally• sufficiently well-founded to warrant entering into the 
elaboration phase. 

Elaboration is the second phase of the process, when the product vision and its architecture are 
defined. In this phase, the system's requirements are articulated, prioritized, and baselined. A 
system's requirements may range from general vision statements to precise evaluation criteria, 
each specifying particular functional or nonfunctional behavior and each providing a basis for 
testing. 

Construction is the third phase of the process, when the software is brought from an executable 
architectural baseline to being ready to be transitioned to the user community. Here also, the 
system's requirements and especially its evaluation criteria are constantly reexamined against the 
business needs of the project, and resources are allocated as appropriate to actively attack risks 
to the project. 

Transition is the fourth phase of the process, when the software is turned into the hands of the 
user community. Rarely does the software development process end here, for even during this 
phase, the system is continuously improved, bugs are eradicated, and features that didn't make 
an earlier release are added. 

One element that distinguishes this process and that cuts across all four phases is an iteration. 
An iteration is a distinct set of activities, with a baselined plan and evaluation criteria that result in 
a release, either internal or external. This means that the software development life cycle can be 
characterized as involving a continuous stream of executable releases of the system's 
architecture. It is this emphasis on architecture as an important artifact that drives the UML to 
focus on modeling the different views of a system's architecture. 

Chapter 3. Hello, World! 
In this chapter 



• Classes and components 

• Static models and dynamic models 

• Connections among models 

• Extending the UML 

Brian Kernighan and Dennis Ritchie, the authors of the C programming language, point out that 
"the only way to learn a new programming language is by writing programs in it." The same is 
true of the UML. The only way to learn the UML is by writing models in it. 

The first program many developers write when approaching a new programming language is a 
simple one, involving little more than printing the string "Hello, World!" This is a reasonable 
starting point, because mastering this trivial application provides some instant gratification. It also 
covers all the infrastructure needed to get something running. 

This is where we begin with the UML. Modeling "Hello, World!" is about the simplest use of the 
UML you'll ever find. However, this application is deceptively easy because underneath it all there 
are some interesting mechanisms that make it work. These mechanisms can easily be modeled 
with the UML, providing a richer view of this simple application. 

Key Abstractions 
In Java, the applet for printing "Hello, World!" in a Web browser is quite simple: 
      
         import java.awt.Graphics; 
         class HelloWorld extends java.applet.Applet { 
          public void paint (Graphics g) { 
           g.drawString("Hello, World!", 10, 10); 
          } 
         } 

The first line of code: 
      
         import java.awt.Graphics; 

makes the class Graphics directly available to the code that follows. The java.awt prefix 
specifies the Java package in which the class Graphics lives. 

The second line of code: 
      
        class HelloWorld extends java.applet.Applet { 

introduces a new class named HelloWorld and specifies that it is a kind of class just like 
Applet, which lives in the package java.applet. 

The next three lines of code: 
      
          public void paint (Graphics g) { 
           g.drawString("Hello, World!", 10, 10); 
          } 

declare an operation named paint, whose implementation invokes another operation, named 
drawString, responsible for printing the string "Hello, World!" at the given coordinates. In 
the usual object-oriented fashion, drawString is an operation on a parameter named g, whose 
type is the class Graphics. 



Classes are discussed in Chapters 4 and 9. 

Modeling this application in the UML is straightforward. As Figure 3-1 shows, you can represent 
the class HelloWorld graphically as a rectangular icon. Its paint operation is shown here, as 
well, with all its formal parameters elided and its implementation specified in the attached note. 

Figure 3-1 Key Abstractions for HelloWorld 

 
Note 

The UML is not a visual programming language, although, as the figure shows, the 
UML does allow•  but does not require• a tight coupling to a variety of programming 
languages, such as Java. The UML is designed to allow models to be transformed into 
code and to allow code to be reengineered back into models. Some things are best 
written in the syntax of a textual programming language (for example, mathematical 
expressions); whereas, other things are best visualized graphically in the UML (for 
example, hierarchies of classes). 

 
This class diagram captures the basics of the "Hello, World!" application, but it leaves out a 
number of things. As the preceding code specifies, two other classes• Applet and Graphics•
are involved in this application and each is used in a different way. The class Applet is used as 
the parent of HelloWorld, and the class Graphics is used in the signature and implementation 
of one of its operations, paint. You can represent these classes and their different relationships 
to the class HelloWorld in a class diagram, as shown in Figure 3-2. 

Figure 3-2 Immediate Neighbors Surrounding HelloWorld 



 
Relationships are discussed in Chapters 5 and 10. 

The Applet and Graphics classes are represented graphically as rectangular icons. No 
operations are shown for either of them, and so their icons are elided. The directed line with the 
hollow arrowhead from HelloWorld to Applet represents generalization, which in this case 
means that HelloWorld is a child of Applet. The dashed directed line from HelloWorld to 
Graphics represents a dependency relationship, which means that HelloWorld uses 
Graphics. 

This is not the end of the framework upon which HelloWorld is built. If you study the Java 
libraries for Applet and Graphics, you will discover that both of these classes are part of a 
larger hierarchy. Tracing just the classes that Applet extends and implements, you can generate 
another class diagram, shown in Figure 3-3. 

Figure 3-3 HelloWorld Inheritance Hierarchy 

 
Note 



This figure is a good example of a diagram generated by reverse engineering an 
existing system. Reverse engineering is the creation of a model from code. 

 
This figure makes it clear that HelloWorld is just a leaf in a larger hierarchy of classes. 
HelloWorld is a child of Applet; Applet is a child of Panel; Panel is a child of 
Container; Container is a child of Component; and Component is a child of Object, 
which is the parent class of every class in Java. This model thus matches the Java library• each 
child extends some parent. 

Interfaces are discussed in Chapter 11. 

The relationship between ImageObserver and Component is a bit different, and the class 
diagram reflects this difference. In the Java library, ImageObserver is an interface, which, 
among other things, means that it has no implementation and instead requires that other classes 
implement it. As the figure shows, you can represent an interface in the UML as a circle. The fact 
that Component implements ImageObserver is represented by the solid line from the 
implementation (Component) to its interface (ImageObserver). 

As these figures show, HelloWorld collaborates directly with only two classes (Applet and 
Graphics), and these two classes are but a small part of the larger library of predefined Java 
classes. To manage this large collection, Java organizes its interfaces and classes in a number of 
different packages. The root package in the Java environment is named, not surprisingly, java. 
Nested inside this package are several other packages, which contain other packages, interfaces, 
and classes. Object lives in the package lang, so its full path name is java.lang.Object. 
Similarly, Panel, Container, and Component live in awt; the class Applet lives in the 
package applet. The interface ImageObserver lives in the package image, which in turn 
lives in the package awt, so its full path name is the rather lengthy string 
java.awt.image.ImageObserver. 

You can visualize this packaging in a class diagram, shown in Figure 3-4. 

Figure 3-4 HelloWorld Packaging 

 
Packages are discussed in Chapter 12. 

As this figure shows, packages are represented in the UML as a tabbed folders. Packages may 
be nested, and the dashed directed lines represent dependencies among these packages. For 
example, HelloWorld depends on the package java.applet, and java.applet depends 
on the package java.awt. 



Mechanisms 
Patterns and frameworks are discussed in Chapter 28. 

The hardest part of mastering a library as rich as Java's is learning how its parts work together. 
For example, how does HelloWorld's paint operation get invoked? What operations must you 
use if you want to change the behavior of this applet, such as making it print the string in a 
different color? To answer these and other questions, you have to have a conceptual model of 
the way these classes work together dynamically. 

Processes and threads are discussed in Chapter 22. 

Studying the Java library reveals that HelloWorld's paint operation is inherited from 
Component. This still begs the question of how this operation is invoked. The answer is that 
paint is called as part of running the thread that encloses the applet, as Figure 3-5 illustrates. 

Figure 3-5 Painting Mechanism 

 
Instances are discussed in Chapter 11. 

This figure shows the collaboration of several objects, including one instance of the class 
HelloWorld. The other objects are a part of the Java environment and so, for the most part, 
live in the background of the applets you create. In the UML, instances are represented just like 
classes, but with their names underlined to distinguish them. The first three objects in this 
diagram are anonymous• they have no unique name. The HelloWorld object has a name 
(target) known by the ComponentPeer object. 

Sequence diagrams are discussed in Chapter 18. 

You can model the ordering of events using a sequence diagram, as in Figure 3-5. Here, the 
sequence begins by running the Thread object, which in turn calls the Toolkit's run operation. 
The Toolkit object then calls one of its own operations (callbackLoop), which then calls the 
ComponentPeer's handleExpose operation. The ComponentPeer object then calls its target's 
paint operation. The ComponentPeer object assumes that its target is a Component, but in 
this case, the target is actually a child of Component (namely, HelloWorld), and so 
HelloWorld's paint operation is dispatched polymorphically. 

Components 



"Hello, World!" is implemented as an applet and so never stands alone but, rather, is typically a 
part of some Web page. The applet starts when its enclosing page is opened, triggered by some 
browser mechanism that runs the applet's Thread object. However, it's not the HelloWorld 
class that's directly a part of the Web page. Rather, it's a binary form of the class, created by a 
Java compiler that transforms the source code representing that class into a component that can 
be executed. This suggests a very different perspective of the system. Whereas all the earlier 
diagrams represented a logical view of the applet, what's going on here is a view of the applet's 
physical components. 

Components are discussed in Chapter 25. 

You can model this physical view using a component diagram, as in Figure 3-6. 

Figure 3-6 HelloWorld Components 

 
Each of the icons in this figure represents a UML element in the implementation view of the 
system. The component called hello.java represents the source code for the logical class 
HelloWorld, so it is a file that may be manipulated by development environments and 
configuration management tools. This source code can be transformed into the binary applet 
hello.class by a Java compiler, making it suitable for execution by a computer's Java virtual 
machine. 

The UML's extensibility mechanisms are discussed in Chapter 6. 

The canonical icon for a component is a rectangle with two tabs. The binary applet 
HelloWorld.class is a variation of this basic symbol, with its lines made thicker, indicating that 
it is an executable component (just like an active class). The icon for the hello.java 
component has been replaced with a user-defined icon, representing a text file. The icon for the 
Web page hello.html has been similarly tailored by extending the UML's notation. As the 
figure indicates, this Web page has another component, hello.jpg, which is represented by a 
user-defined component icon, in this case providing a thumbnail sketch of the graphics image. 
Because these latter three components use user-defined graphical symbols, their names are 
placed outside the icon. 

Note 



The relationships among the class (HelloWorld), its source code (hello.java), 
and its object code (HelloWorld.class) are rarely modeled explicitly, although it is 
sometimes useful to do so to visualize the physical configuration of a system. On the 
other hand, it is common to visualize the organization of a Web-based system such as 
this by using component diagrams to model its pages and other executable 
components. 

Part II: Basic Structural Modeling 
 

 

Chapter 4. Classes 
In this chapter 

• Classes, attributes, operations, and responsibilities 

• Modeling the vocabulary of a system 

• Modeling the distribution of responsibilities in a system 

• Modeling nonsoftware things 

• Modeling primitive types 

• Making quality abstractions 

Classes are the most important building block of any object-oriented system. A class is a 
description of a set of objects that share the same attributes, operations, relationships, and 
semantics. A class implements one or more interfaces. 

Advanced features of classes are discussed in Chapter 9. 



You use classes to capture the vocabulary of the system you are developing. These classes may 
include abstractions that are part of the problem domain, as well as classes that make up an 
implementation. You can use classes to represent software things, hardware things, and even 
things that are purely conceptual. 

Well-structured classes have crisp boundaries and form a part of a balanced distribution of 
responsibilities across the system. 

Getting Started 
Modeling a system involves identifying the things that are important to your particular view. These 
things form the vocabulary of the system you are modeling. For example, if you are building a 
house, things like walls, doors, windows, cabinets, and lights are some of the things that will be 
important to you as a home owner. Each of these things can be distinguished from the other. 
Each of them also has a set of properties. Walls have a height and a width and are solid. Doors 
also have a height and a width and are solid, as well, but have the additional behavior that allows 
them to open in one direction. Windows are similar to doors in that both are openings that pass 
through walls, but windows and doors have slightly different properties. Windows are usually (but 
not always) designed so that you can look out of them instead of pass through them. 

Individual walls, doors, and windows rarely exist in isolation, so you must also consider how 
specific instances of these things fit together. The things you identify and the relationships you 
choose to establish among them will be affected by how you expect to use the various rooms of 
your home, how you expect traffic to flow from room to room, and the general style and feel you 
want this arrangement to create. 

Users will be concerned about different things. For example, the plumbers who help build your 
house will be interested in things like drains, traps, and vents. You, as a home owner, won't 
necessarily care about these things except insofar as they interact with the things in your view, 
such as where a drain might be placed in a floor or where a vent might intersect with the roof line. 

Objects are discussed in Chapter 13. 

In the UML, all of these things are modeled as classes. A class is an abstraction of the things that 
are a part of your vocabulary. A class is not an individual object, but rather represents a whole set 
of objects. Thus, you may conceptually think of "wall" as a class of objects with certain common 
properties, such as height, length, thickness, load-bearing or not, and so on. You may also think 
of individual instances of wall, such as "the wall in the southwest corner of my study." 

In software, many programming languages directly support the concept of a class. That's 
excellent, because it means that the abstractions you create can often be mapped directly to a 
programming language, even if these are abstractions of nonsoftware things, such as "customer," 
"trade," or "conversation." 

The UML provides a graphical representation of class, as well, as Figure 4-1 shows. This 
notation permits you to visualize an abstraction apart from any specific programming language 
and in a way that lets you emphasize the most important parts of an abstraction: its name, 
attributes, and operations. 

Figure 4-1 Classes 



 

Terms and Concepts 
A class is a description of a set of objects that share the same attributes, operations, 
relationships, and semantics. Graphically, a class is rendered as a rectangle. 

Names 

A class name must be unique within its enclosingpackage, as discussed in Chapter 12. 

Every class must have a name that distinguishes it from other classes. A name is a textual string. 
That name alone is known as a simple name; a path name is the class name prefixed by the 
name of the package in which that class lives. A class may be drawn showing only its name, as 
Figure 4-2 shows. 

Figure 4-2 Simple and Path Names 

 
Note 

A class name may be text consisting of any number of letters, numbers, and certain 
punctuation marks (except for marks such as the colon, which is used to separate a 
class name and the name of its enclosing package) and may continue over several 
lines. In practice, class names are short nouns or noun phrases drawn from the 
vocabulary of the system you are modeling. Typically, you capitalize the first letter of 
every word in a class name, as in Customer or TemperatureSensor. 

 



Attributes 

Attributes arerelated to the semantics ofaggregation, as discussed in Chapter 10. 

An attribute is a named property of a class that describes a range of values that instances of the 
property may hold. A class may have any number of attributes or no attributes at all. An attribute 
represents some property of the thing you are modeling that is shared by all objects of that class. 
For example, every wall has a height, width, and thickness; you might model your customers in 
such a way that each has a name, address, phone number, and date of birth. An attribute is 
therefore an abstraction of the kind of data or state an object of the class might encompass. At a 
given moment, an object of a class will have specific values for every one of its class's attributes. 
Graphically, attributes are listed in a compartment just below the class name. Attributes may be 
drawn showing only their names, as shown in Figure 4-3. 

Figure 4-3 Attributes 

 
Note 

An attribute name may be text, just like a class name. In practice, an attribute name is 
a short noun or noun phrase that represents some property of its enclosing class. 
Typically, you capitalize the first letter of every word in an attribute name except the 
first letter, as in name or loadBearing. 

 
You can specify other features of anattribute, such as marking it read-only or shared by all 
objects of the class, as discussed in Chapter 9. 

You can further specify an attribute by stating its class and possibly a default initial value, as 
shown Figure 4-4. 

Figure 4-4 Attributes and Their Class 



 
Operations 

You can further specify the implementation of anoperation by using a note, as described in 
Chapter 6, or by using an activity diagram, as discussed in Chapter 19. 

An operation is the implementation of a service that can be requested from any object of the class 
to affect behavior. In other words, an operation is an abstraction of something you can do to an 
object and that is shared by all objects of that class. A class may have any number of operations 
or no operations at all. For example, in a windowing library such as the one found in Java's awt 
package, all objects of the class Rectangle can be moved, resized, or queried for their 
properties. Often (but not always), invoking an operation on an object changes the object's data 
or state. Graphically, operations are listed in a compartment just below the class attributes. 
Operations may be drawn showing only their names, as in Figure 4-5. 

Figure 4-5 Operations 

 
Note 

An operation name may be text, just like a class name. In practice, an operation name 
is a short verb or verb phrase that represents some behavior of its enclosing class. 
Typically, you capitalize the first letter of every word in an operation name except the 
first letter, as in move or isEmpty. 



 
You can specify other features of an operation, such as marking it polymorphic or constant, or 
specifying its visibility, as discussed in Chapter 9. 

You can specify an operation by stating its signature, covering the name, type, and default value 
of all parameters and (in the case of functions) a return type, as shown in Figure 4-6. 

Figure 4-6 Operations and Their Signatures 

 
Organizing Attributes and Operations 

When drawing a class, you don't have to show every attribute and every operation at once. In 
fact, in most cases, you can't (there are too many of them to put in one figure) and you probably 
shouldn't (only a subset of these attributes and operations are likely to be relevant to a specific 
view). For these reasons, you can elide a class, meaning that you can choose to show only some 
or none of a class's attributes and operations. An empty compartment doesn't necessarily mean 
there are no attributes or operations, just that you didn't choose to show them. You can explicitly 
specify that there are more attributes or properties than shown by ending each list with an ellipsis 
("..."). 

Stereotypes are discussed in Chapter 6. 

To better organize long lists of attributes and operations, you can also prefix each group with a 
descriptive category by using stereotypes, as shown in Figure 4-7. 

Figure 4-7 Stereotypes for Class Features 



 
Responsibilities 

Responsibilities are an example of a defined stereotype , as discussed in Chapter 6. 

A responsibility is a contract or an obligation of a class. When you create a class, you are making 
a statement that all objects of that class have the same kind of state and the same kind of 
behavior. At a more abstract level, these corresponding attributes and operations are just the 
features by which the class's responsibilities are carried out. A Wall class is responsible for 
knowing about height, width, and thickness; a FraudAgent class, as you might find in a credit 
card application, is responsible for processing orders and determining if they are legitimate, 
suspect, or fraudulent; a TemperatureSensor class is responsible for measuring temperature 
and raising an alarm if the temperature reaches a certain point. 

Modeling the semantics of aclass is discussed in Chapter 9. 

When you model classes, a good starting point is to specify the responsibilities of the things in 
your vocabulary. Techniques like CRC cards and use case-based analysis are especially helpful 
here. A class may have any number of responsibilities, although, in practice, every well-structured 
class has at least one responsibility and at most just a handful. As you refine your models, you 
will translate these responsibilities into a set of attributes and operations that best fulfill the class's 
responsibilities. 

You can also draw the responsibilities of a class in a note, as discussed in Chapter 6. 

Graphically, responsibilities can be drawn in a separate compartment at the bottom of the class 
icon, as shown in Figure 4-8. 

Figure 4-8 Responsibilities 



 
Note 

Responsibilities are just free-form text. In practice, a single responsibility is written as a 
phrase, a sentence, or (at most) a short paragraph. 

 

Other Features 

Advanced class concepts are discussed in Chapter 9. 

Attributes, operations, and responsibilities are the most common features you'll need when you 
create abstractions. In fact, for most models you build, the basic form of these three features will 
be all you need to convey the most important semantics of your classes. Sometimes, however, 
you'll need to visualize or specify other features, such as the visibility of individual attributes and 
operations; language-specific features of an operation, such as whether it is polymorphic or 
constant; or even the exceptions that objects of the class might produce or handle. These and 
many other features can be expressed in the UML, but they are treated as advanced concepts. 

Interfaces are discussed in Chapter 11. 

When you build models, you will soon discover that almost every abstraction you create is some 
kind of class. Sometimes, you will want to separate the implementation of a class from its 
specification, and this can be expressed in the UML by using interfaces. 

Active classes, components, and nodes are discussed in Chapters 22, 24, and 26, respectively. 

When you start building more complex models, you will also find yourself encountering the same 
kinds of classes over and over again, such as classes that represent concurrent processes and 
threads, or classes that represent physical things, such as applets, Java Beans, COM+ objects, 
files, Web pages, and hardware. Because these kinds of classes are so common and because 
they represent important architectural abstractions, the UML provides active classes 
(representing processes and threads), components (representing physical software components), 
and nodes (representing hardware devices). 

Class diagrams are discussed in Chapter 8. 



Finally, classes rarely stand alone. Rather, when you build models, you will typically focus on 
groups of classes that interact with one another. In the UML, these societies of classes form 
collaborations and are usually visualized in class diagrams. 

Common Modeling Techniques 

Modeling the Vocabulary of a System 

You'll use classes most commonly to model abstractions that are drawn from the problem you are 
trying to solve or from the technology you are using to implement a solution to that problem. Each 
of these abstractions is a part of the vocabulary of your system, meaning that, together, they 
represent the things that are important to users and to implementers. 

Use cases are discussed in Chapter 16. 

For users, most abstractions are not that hard to identify because, typically, they are drawn from 
the things that users already use to describe their system. Techniques such as CRC cards and 
use case-based analysis are excellent ways to help users find these abstractions. For 
implementers, these abstractions are typically just the things in the technology that are parts of 
the solution. 

To model the vocabulary of a system, 

• Identify those things that users or implementers use to describe the problem or solution. 
Use CRC cards and use case-based analysis to help find these abstractions. 

• For each abstraction, identify a set of responsibilities. Make sure that each class is crisply 
defined and that there is a good balance of responsibilities among all your classes. 

• Provide the attributes and operations that are needed to carry out these responsibilities 
for each class. 

Figure 4-9 shows a set of classes drawn from a retail system, including Customer, Order, and 
Product. This figure includes a few other related abstractions drawn from the vocabulary of the 
problem, such as Shipment (used to track orders), Invoice (used to bill orders), and 
Warehouse (where products are located prior to shipment). There is also one solution-related 
abstraction, Transaction, which applies to orders and shipments. 

Figure 4-9 Modeling the Vocabulary of a System 



 
Packages are discussed in Chapter 12. 

As your models get larger, many of the classes you find will tend to cluster together in groups that 
are conceptually and semantically related. In the UML, you can use packages to model these 
clusters of classes. 

Modeling behavior is discussed in Sections 4 and 5. 

Most of your models will rarely be completely static. Instead, most abstractions in your system's 
vocabulary will interact with one another in dynamic ways. In the UML, there are a number of 
ways to model this dynamic behavior. 

Modeling the Distribution of Responsibilities in a System 

Once you start modeling more than just a handful of classes, you will want to be sure that your 
abstractions provide a balanced set of responsibilities. What this means is that you don't want 
any one class to be too big or too small. Each class should do one thing well. If you abstract 
classes that are too big, you'll find that your models are hard to change and are not very 
reusable. If you abstract classes that are too small, you'll end up with many more abstractions 
than you can reasonably manage or understand. You can use the UML to help you visualize and 
specify this balance of responsibilities. 

To model the distribution of responsibilities in a system, 

• Identify a set of classes that work together closely to carry out some behavior. 



• Identify a set of responsibilities for each of these classes. 

• Look at this set of classes as a whole, split classes that have too many responsibilities 
into smaller abstractions, collapse tiny classes that have trivial responsibilities into larger 
ones, and reallocate responsibilities so that each abstraction reasonably stands on its 
own. 

• Consider the ways in which those classes collaborate with one another, and redistribute 
their responsibilities accordingly so that no class within a collaboration does too much or 
too little. 

Collaborations are discussed in Chapter 27. 

This set of classes forms a pattern, as discussed in Chapter 28. 

For example, Figure 4-10 shows a set of classes drawn from Smalltalk, showing the distribution 
of responsibilities among Model, View, and Controller classes. Notice how all these classes 
work together such that no one class does too much or too little. 

Figure 4-10 Modeling the Distribution of Responsibilities in a System 

 
Modeling Nonsoftware Things 

Sometimes, the things you model may never have an analog in software. For example, the 
people who send invoices and the robots that automatically package orders for shipping from a 
warehouse might be a part of the workflow you model in a retail system. Your application might 
not have any software that represents them (unlike customers in the example above, since your 
system will probably want to maintain information about them). 

To model nonsoftware things, 

Stereotypes are discussed in Chapter 6. 



• Model the thing you are abstracting as a class. 

• If you want to distinguish these things from the UML's defined building blocks, create a 
new building block by using stereotypes to specify these new semantics and to give a 
distinctive visual cue. 

• If the thing you are modeling is some kind of hardware that itself contains software, 
consider modeling it as a kind of node, as well, so that you can further expand on its 
structure. 

Nodes are discussed in Chapter 26. 

Note 

The UML is mainly intended for modeling software-intensive systems, although, in 
conjunction with textual hardware modeling languages, such as VHDL, the UML can 
be quite expressive for modeling hardware systems. 

 

Things that are external to your system are often modeled as actors, as discussed in Chapter 
16. 

As Figure 4-11 shows, it's perfectly normal to abstract humans (like 
AccountsReceivableAgent) and hardware (like Robot) as classes, because each represents 
a set of objects with a common structure and a common behavior. 

Figure 4-11 Modeling Nonsoftware Things 

 
Modeling Primitive Types 

Types are discussed in Chapter 11. 

At the other extreme, the things you model may be drawn directly from the programming 
language you are using to implement a solution. Typically, these abstractions involve primitive 
types, such as integers, characters, strings, and even enumeration types, that you might create 
yourself. 

To model primitive types, 

• Model the thing you are abstracting as a type or an enumeration, which is rendered using 
class notation with the appropriate stereotype. 

• If you need to specify the range of values associated with this type, use constraints. 

Constraints are described in Chapter 6. 



Types are discussed in Chapter 11. 

As Figure 4-12 shows, these things can be modeled in the UML as types or enumerations, 
which are rendered just like classes but are explicitly marked via stereotypes. Things like integers 
(represented by the class Int) are modeled as types, and you can explicitly indicate the range of 
values these things can take on by using a constraint. Similarly, enumeration types, such as 
Boolean and Status, can be modeled as enumerations, with their individual values provided as 
attributes. 

Figure 4-12 Modeling Primitive Types 

 
Note 

Some languages, such as C and C++, let you set an equivalent integer value for an 
enumeration. You can model this in the UML by marking the attributes that denote an 
enumeration with a constant default initial value. 

Hints and Tips 
When you model classes in the UML, remember that every class should map to some tangible or 
conceptual abstraction in the domain of the end user or the implementer. A well-structured class 

• Provides a crisp abstraction of something drawn from the vocabulary of the problem 
domain or the solution domain. 

• Embodies a small, well-defined set of responsibilities and carries them all out very well. 

• Provides a clear separation of the abstraction's specification and its implementation. 

• Is understandable and simple yet extensible and adaptable. 



When you draw a class in the UML, 

• Show only those properties of the class that are important to understanding the 
abstraction in its context. 

• Organize long lists of attributes and operations by grouping them according to their 
category. 

• Show related classes in the same class diagrams. 

Chapter 5. Relationships 
In this chapter 

• Dependency, generalization, and association relationships 

• Modeling simple dependencies 

• Modeling single inheritance 

• Modeling structural relationships 

• Creating webs of relationships 

When you build abstractions, you'll discover that very few of your classes stand alone. Instead, 
most of them collaborate with others in a number of ways. Therefore, when you model a system, 
not only must you identify the things that form the vocabulary of your system, you must also 
model how these things stand in relation to one another. 

Advanced features of relationships are discussed in Chapter 10. 

In object-oriented modeling, there are three kinds of relationships that are especially important: 
dependencies, which represent using relationships among classes (including refinement, trace, 
and bind relationships); generalizations, which link generalized classes to their specializations; 
and associations, which represent structural relationships among objects. Each of these 
relationships provides a different way of combining your abstractions. 

Building webs of relationships is not unlike creating a balanced distribution of responsibilities 
among your classes. Over-engineer, and you'll end up with a tangled mess of relationships that 
make your model incomprehensible; under-engineer, and you'll have missed a lot of the richness 
of your system embodied in the way things collaborate. 

Getting Started 
If you are building a house, things like walls, doors, windows, cabinets, and lights will form part of 
your vocabulary. None of these things stands alone, however. Walls connect to other walls. 
Doors and windows are placed in walls to form openings for people and for light. Cabinets and 
lights are physically attached to walls and ceilings. You group walls, doors, windows, cabinets, 
and lights together to form higher-level things, such as rooms. 

Not only will you find structural relationships among these things, you'll find other kinds of 
relationships, as well. For example, your house certainly has windows, but there are probably 
many kinds of windows. You might have large bay windows that don't open, as well as small 
kitchen windows that do. Some of your windows might open up and down; others, like patio 
windows, will slide left and right. Some windows have a single pane of glass; others have double. 



No matter their differences, there is some essential "window-ness" about each of them: Each is 
an opening in a wall, and each is designed to let in light, air, and sometimes, people. 

In the UML, the ways that things can connect to one another, either logically or physically, are 
modeled as relationships. In object-oriented modeling, there are three kinds of relationships that 
are most important: dependencies, generalizations, and associations. 

Dependencies are using relationships. For example, pipes depend on the water heater to heat 
the water they carry. 

Generalizations connect generalized classes to more-specialized ones in what is known as 
subclass/superclass or child/parent relationships. For example, a bay window is a kind of window 
with large, fixed panes; a patio window is a kind of window with panes that open side to side. 

Associations are structural relationships among instances. For example, rooms consist of walls 
and other things; walls themselves may have embedded doors and windows; pipes may pass 
through walls. 

Other kinds of relationships, such as realization and refinement, are discussed in Chapter 10. 

These three kinds of relationships cover most of the important ways in which things collaborate 
with one another. Not surprisingly, they also map well to the ways that are provided by most 
object-oriented programming languages to connect objects. 

The UML provides a graphical representation for each of these kinds of relationships, as Figure 
5-1 shows. This notation permits you to visualize relationships apart from any specific 
programming language, and in a way that lets you emphasize the most important parts of a 
relationship: its name, the things it connects, and its properties. 

Figure 5-1 Relationships 

 

Terms and Concepts 
A relationship is a connection among things. In object-oriented modeling, the three most 
important relationships are dependencies, generalizations, and associations. Graphically, a 
relationship is rendered as a path, with different kinds of lines used to distinguish the kinds of 
relationships. 

Dependency 



A dependency is a using relationship that states that a change in specification of one thing (for 
example, class Event) may affect another thing that uses it (for example, class Window), but not 
necessarily the reverse. Graphically, a dependency is rendered as a dashed directed line, 
directed to the thing being depended on. Use dependencies when you want to show one thing 
using another. 

Notes are discussed in Chapter 6; packages are discussed in Chapter 12. 

Most often, you will use dependencies in the context of classes to show that one class uses 
another class as an argument in the signature of an operation; see Figure 5-2. This is very 
much a using relationship• if the used class changes, the operation of the other class may be 
affected, as well, because the used class may now present a different interface or behavior. In 
the UML you can also create dependencies among many other things, especially notes and 
packages. 

Figure 5-2 Dependencies 

 
Different kinds of dependencies are discussed in Chapter 10; stereotypes are discussed in 
Chapter 6. 

Note 

A dependency can have a name, although names are rarely needed unless you have 
a model with many dependencies and you need to refer to or distinguish among 
dependencies. More commonly, you'll use stereotypes to distinguish different flavors of 
dependencies. 

 

Generalization 

A generalization is a relationship between a general thing (called the superclass or parent)and a 
more specific kind of that thing (called the subclass or child). Generalization is sometimes called 
an "is-a-kind-of" relationship: one thing (like the class BayWindow) is-a-kind-of a more general 
thing (for example, the class Window). Generalization means that objects of the child may be 
used anywhere the parent may appear, but not the reverse. In other words, generalization means 
that the child is substitutable for the parent. A child inherits the properties of its parents, especially 
their attributes and operations. Often•  but not always• the child has attributes and operations in 
addition to those found in its parents. An operation of a child that has the same signature as an 
operation in a parent overrides the operation of the parent; this is known as polymorphism. 
Graphically, generalization is rendered as a solid directed line with a large open arrowhead, 
pointing to the parent, as shown in Figure 5-3. Use generalizations when you want to show 
parent/child relationships. 



Figure 5-3 Generalization 

 
A class may have zero, one, or more parents. A class that has no parents and one or more 
children is called a root class or a base class. A class that has no children is called a leaf class. A 
class that has exactly one parent is said to use single inheritance; a class with more than one 
parent is said to use multiple inheritance. 

Packages are discussed in Chapter 12. 

Most often, you will use generalizations among classes and interfaces to show inheritance 
relationships. In the UML, you can also create generalizations among other things• most notably, 
packages. 

Note 

A generalization can have a name, although names are rarely needed unless you 
have a model with many generalizations and you need to refer to or discriminate 
among generalizations. 

 

Association 

Associations and dependencies (but not generalization relationships) may be reflective, as 
discussed in Chapter 10. 

An association is a structural relationship that specifies that objects of one thing are connected to 
objects of another. Given an association connecting two classes, you can navigate from an object 



of one class to an object of the other class, and vice versa. It's quite legal to have both ends of an 
association circle back to the same class. This means that, given an object of the class, you can 
link to other objects of the same class. An association that connects exactly two classes is called 
a binary association. Although it's not as common, you can have associations that connect more 
than two classes; these are called n-ary associations. Graphically, an association is rendered as 
a solid line connecting the same or different classes. Use associations when you want to show 
structural relationships. 

Beyond this basic form, there are four adornments that apply to associations. 

Don't confuse name direction with association navigation, as discussed in Chapter 10. 

Name   

An association can have a name, and you use that name to describe the nature of the 
relationship. So that there is no ambiguity about its meaning, you can give a direction to the name 
by providing a direction triangle that points in the direction you intend to read the name, as shown 
in Figure 5-4. 

Figure 5-4 Association Names 

 
Note 

Although an association may have a name, you typically don't need to include one if 
you explicitly provide role names for the association, or if you have a model with many 
associations and you need to refer to or distinguish among associations. This is 
especially true when you have more than one association connecting the same 
classes. 

 

Roles are related to the semantics of interfaces, as discussed in Chapter 11. 

Role   

When a class participates in an association, it has a specific role that it plays in that relationship; 
a role is just the face the class at the near end of the association presents to the class at the 
other end of the association. You can explicitly name the role a class plays in an association. In 
Figure 5-5, a Person playing the role of employee is associated with a Company playing the 
role of employer. 

Figure 5-5 Roles 



 
Note 

The same class can play the same or different roles in other associations. 

 

An instance of an association is called a link, as discussed in Chapter 15. 

Multiplicity   

An association represents a structural relationship among objects. In many modeling situations, 
it's important for you to state how many objects may be connected across an instance of an 
association. This "how many" is called the multiplicity of an association's role, and is written as an 
expression that evaluates to a range of values or an explicit value as in Figure 5-6. When you 
state a multiplicity at one end of an association, you are specifying that, for each object of the 
class at the opposite end, there must be that many objects at the near end. You can show a 
multiplicity of exactly one (1), zero or one (0..1), many (0..*), or one or more (1..*). You can 
even state an exact number (for example, 3). 

Figure 5-6 Multiplicity 

 
Note 

You can specify more complex multiplicities by using a list, such as 0..1, 3..4, 
6..*, which would mean "any number of objects other than 2 or 5." 



 

Aggregation has a number of important variations, as discussed in Chapter 10. 

Aggregation   

A plain association between two classes represents a structural relationship between peers, 
meaning that both classes are conceptually at the same level, no one more important than the 
other. Sometimes, you will want to model a "whole/part" relationship, in which one class 
represents a larger thing (the "whole"), which consists of smaller things (the "parts"). This kind of 
relationship is called aggregation, which represents a "has-a" relationship, meaning that an object 
of the whole has objects of the part. Aggregation is really just a special kind of association and is 
specified by adorning a plain association with an open diamond at the whole end, as shown in 
Figure 5-7. 

Figure 5-7 Aggregation 

 
Note 

The meaning of this simple form of aggregation is entirely conceptual. The open 
diamond distinguishes the "whole" from the "part," no more, no less. This means that 
simple aggregation does not change the meaning of navigation across the association 
between the whole and its parts, nor does it link the lifetimes of the whole and its parts. 

 

Other Features 

Advanced relationship concepts are discussed in Chapter 10. 

Plain, unadorned dependencies, generalizations, and associations with names, multiplicities, and 
roles are the most common features you'll need when creating abstractions. In fact, for most of 
the models you build, the basic form of these three relationships will be all you need to convey 
the most important semantics of your relationships. Sometimes, however, you'll need to visualize 
or specify other features, such as composite aggregation, navigation, discriminants, association 
classes, and special kinds of dependencies and generalizations. These and many other features 
can be expressed in the UML, but they are treated as advanced concepts. 



Class diagrams are discussed in Chapter 8. 

Dependencies, generalization, and associations are all static things defined at the level of 
classes. In the UML, these relationships are usually visualized in class diagrams. 

Links are discussed in Chapter 15; transitions are discussed in Chapter 21. 

When you start modeling at the object level, and especially when you start working with dynamic 
collaborations of these objects, you'll encounter two other kinds of relationships• links (which are 
instances of associations representing connections among objects across which messages may 
be sent) and transitions (which are connections among states in a state machine). 

Common Modeling Techniques 

Modeling Simple Dependencies 

The most common kind of dependency relationship is the connection between a class that only 
uses another class as a parameter to an operation. 

To model this using relationship, 

• Create a dependency pointing from the class with the operation to the class used as a 
parameter in the operation. 

For example, Figure 5-8 shows a set of classes drawn from a system that manages the 
assignment of students and instructors to courses in a university. This figure shows a 
dependency from CourseSchedule to Course, because Course is used in both the add and 
remove operations of CourseSchedule. 

Figure 5-8 Dependency Relationships 

 
If you provide the full signature of the operation as in this figure, you don't normally need to show 
the dependency, as well, because the use of the class is already explicit in the signature. 
However, you'll want to show this dependency sometimes, especially if you've elided operation 
signatures or if your model shows other relationships to the used class. 

Other relationship stereotypes are discussed in Chapter 10. 



This figure shows one other dependency, this one not involving classes in operations but rather 
modeling a common C++ idiom. The dependency from Iterator shows that the Iterator 
uses the CourseSchedule; the CourseSchedule knows nothing about the Iterator. The 
dependency is marked with a stereotype, which specifies that this is not a plain dependency, but, 
rather, it represents a friend, as in C++. 

Modeling Single Inheritance 

In modeling the vocabulary of your system, you will often run across classes that are structurally 
or behaviorally similar to others. You could model each of these as distinct and unrelated 
abstractions. A better way would be to extract any common structural and behavioral features 
and place them in more-general classes from which the specialized ones inherit. 

To model inheritance relationships, 

• Given a set of classes, look for responsibilities, attributes, and operations that are 
common to two or more classes. 

• Elevate these common responsibilities, attributes, and operations to a more general 
class. If necessary, create a new class to which you can assign these elements (but be 
careful about introducing too many levels). 

• Specify that the more-specific classes inherit from the more-general class by placing a 
generalization relationship that is drawn from each specialized class to its more-general 
parent. 

For example, Figure 5-9 shows a set of classes drawn from a trading application. You will find a 
generalization relationship from four classes•  CashAccount, Stock, Bond, and Property• to 
the more-general class named Security. Security is the parent, and CashAccount, Stock, 
Bond, and Property are all children. Each of these specialized children is a kind of Security. 
You'll notice that Security includes two operations: presentValue and history. Because 
Security is their parent, CashAccount, Stock, Bond, and Property all inherit these two 
operations, and for that matter, any other attributes and operations of Security that may be 
elided in this figure. 

Figure 5-9 Inheritance Relationships 



 
Abstract classes and operations are discussed in Chapter 9. 

You may notice that the names Security and presentValue are written a bit differently than 
others. There's a reason for this. When you build hierarchies as in the preceding figure, you often 
encounter nonleaf classes that are incomplete or are simply ones for which you don't want there 
to be any objects. Such classes are called abstract. You can specify a class as abstract in the 
UML by writing its name in italics, such as for the class Security. This convention applies to 
operations such presentValue and means that the given operation provides a signature but is 
otherwise incomplete and so must be implemented by some method at a lower level of 
abstraction. In fact, as the figure shows, all four of the immediate children of Security are 
concrete (meaning that they are nonabstract) and also provide a concrete implementation of the 
operation presentValue. 

Your generalization/specialization hierarchies don't have to be limited to only two levels. In fact, 
as the figure shows, it is common to have more than two layers of inheritance. SmallCapStock 
and LargeCapStock are both children of Stock, which, in turn, is a child of Security. 
Security is therefore a base class because it has no parents. SmallCapStock and 
LargeCapStock are both leaf classes because they have no children. Stock has a parent as 
well as children, and so it is neither a root nor a leaf class. 

Multiple inheritance is discussed in Chapter 10. 

Although it is not shown here, you can also create classes that have more than one parent. This 
is called multiple inheritance and means that the given class has all the attributes, operations, 
and associations of all its parents. 

Of course, there can be no cycles in an inheritance lattice; a given class cannot be its own parent. 

Modeling Structural Relationships 

When you model with dependencies or generalization relationships, you are modeling classes 
that represent different levels of importance or different levels of abstraction. Given a dependency 



between two classes, one class depends on another but the other class has no knowledge of the 
one. Given a generalization relationship between two classes, the child inherits from its parent but 
the parent has no specific knowledge of its children. In short, dependency and generalization 
relationships are one-sided. 

Associations are, by default, bidirectional; you can limit their direction, as discussed in Chapter 
10. 

When you model with association relationships, you are modeling classes that are peers of one 
another. Given an association between two classes, both rely on the other in some way, and you 
can navigate in either direction. Whereas dependency is a using relationship and generalization is 
an is-a-kind-of relationship, an association specifies a structural path across which objects of the 
classes interact. 

To model structural relationships, 

• For each pair of classes, if you need to navigate from objects of one to objects of 
another, specify an association between the two. This is a data-driven view of 
associations. 

• For each pair of classes, if objects of one class need to interact with objects of the other 
class other than as parameters to an operation, specify an association between the two. 
This is more of a behavior-driven view of associations. 

• For each of these associations, specify a multiplicity (especially when the multiplicity is 
not *, which is the default), as well as role names (especially if it helps to explain the 
model). 

• If one of the classes in an association is structurally or organizationally a whole compared 
with the classes at the other end that look like parts, mark this as an aggregation by 
adorning the association at the end near the whole. 

Use cases are discussed in Chapter 16. 

How do you know when objects of a given class must interact with objects of another class? The 
answer is that CRC cards and use case analysis help tremendously by forcing you to consider 
structural and behavioral scenarios. Where you find that two or more classes interact, specify an 
association. 

Figure 5-10 shows a set of classes drawn from an information system for a school. Starting at 
the bottom left of this diagram, you will find the classes named Student, Course, and 
Instructor. There's an association between Student and Course, specifying that students 
attend courses. Furthermore, every student may attend any number of courses and every course 
may have any number of students. 

Figure 5-10 Structural Relationships 



 
Similarly, you'll find an association between Course and Instructor, specifying that 
instructors teach courses. For every course there is at least one instructor and every instructor 
may teach zero or more courses. 

The aggregation relationship between School and Department is composite aggregation, as 
discussed in Chapter 10. 

The relationships between School and the classes Student and Department are a bit 
different. Here you'll see aggregation relationships. A school has zero or more students, each 
student may be a registered member of one or more schools, a school has one or more 
departments, each department belongs to exactly one school. You could leave off the 
aggregation adornments and use plain associations, but by specifying that School is a whole 
and that Student and Department are some of its parts, you make clear which one is 
organizationally superior to the other. Thus, schools are somewhat defined by the students and 
departments they have. Similarly, students and departments don't really stand alone outside the 
school to which they belong. Rather, they get some of their identity from their school. 

You'll also see that there are two associations between Department and Instructor. One of 
these associations specifies that every instructor is assigned to one or more departments and 
that each department has one or more instructors. This is modeled as an aggregation because 
organizationally, departments are at a higher level in the school's structure than are instructors. 
The other association specifies that for every department, there is exactly one instructor who is 
the department chair. The way this model is specified, an instructor can be the chair of no more 
than one department and some instructors are not chairs of any department. 

Note 

You may take exception to this model because it might not reflect your reality. Your 
school might not have departments. You might have chairs who are not instructors or 
you might even have students who are also instructors. That doesn't mean that the 
model here is wrong, it's just different. You cannot model in isolation, and every model 
like this depends on how you intend to use these models. 

Hints and Tips 
When you model relationships in the UML, 

• Use dependencies only when the relationship you are modeling is not structural. 

• Use generalization only when you have an "is-a-kind-of" relationship; multiple inheritance 
can often be replaced with aggregation. 

• Beware of introducing cyclical generalization relationships. 



• Keep your generalization relationships generally balanced; inheritance latices should not 
be too deep (more than five levels or so should be questioned) nor too wide (instead, 
look for the possibility of intermediate abstract classes). 

• Use associations primarily where there are structural relationships among objects. 

When you draw a relationship in the UML, 

• Use either rectilinear or oblique lines consistently. Rectilinear lines give a visual cue that 
emphasizes the connections among related things all pointing to one common thing. 
Oblique lines are often more space-efficient in complex diagrams. Using both kinds of 
lines in the same diagram is useful for drawing attention to different groups of 
relationships. 

• Avoid lines that cross. 

• Show only those relationships that are necessary to understand a particular grouping of 
things. Superfluous relationships (especially redundant associations) should be elided. 

Chapter 6. Common Mechanisms 
In this chapter 

• Notes 

• Stereotypes, tagged values, and constraints 

• Modeling comments 

• Modeling new building blocks 

• Modeling new properties 

• Modeling new semantics 

• Extending the UML 

These common mechanisms are discussed in Chapter 2. 

The UML is made simpler by the presence of four common mechanisms that apply consistently 
throughout the language: specifications, adornments, common divisions, and extensibility 
mechanisms. This chapter explains the use of two of these common mechanisms, adornments 
and extensibility mechanisms. 

Notes are the most important kind of adornment that stands alone. A note is a graphical symbol 
for rendering constraints or comments attached to an element or a collection of elements. You 
use notes to attach information to a model, such as requirements, observations, reviews, and 
explanations. 

The UML's extensibility mechanisms permit you to extend the language in controlled ways. These 
mechanisms include stereotypes, tagged values, and constraints. A stereotype extends the 
vocabulary of the UML, allowing you to create new kinds of building blocks that are derived from 
existing ones but that are specific to your problem. A tagged value extends the properties of a 
UML building block, allowing you to create new information in that element's specification. A 
constraint extends the semantics of a UML building block, allowing you to add new rules or 
modify existing ones. You use these mechanisms to tailor the UML to the specific needs of your 
domain and your development culture. 



Getting Started 
Sometimes, you just have to color outside the lines. For example, at a job site, an architect might 
scribble a few notes on the building's blueprints in order to communicate a subtle detail to the 
construction workers. In a recording studio, a composer might invent a new musical notation to 
represent some unusual effect she wants from a keyboard player. In both cases, there already 
exist well-defined languages• the language of structural blueprints and the language of musical 
notation• but, sometimes, you have to bend or extend those languages in controlled ways to 
communicate your intent. 

Modeling is all about communication. The UML already gives you all the tools you need to 
visualize, specify, construct, and document the artifacts of a wide range of software-intensive 
systems. However, you might find circumstances in which you'll want to bend or extend the UML. 
This happens to human languages all the time (that's why new dictionaries get published every 
year), because no static language can ever be sufficient to cover everything you'll want to 
communicate for all time. When using a modeling language such as the UML, remember that you 
are doing so to communicate, and that means you'll want to stick to the core language unless 
there's compelling reason to deviate. When you find yourself needing to color outside the lines, 
you should do so only in controlled ways. Otherwise, you will make it impossible for anyone to 
understand what you've done. 

Notes are the mechanism provided by the UML to let you capture arbitrary comments and 
constraints to help illuminate the models you've created. Notes may represent artifacts that play 
an important role in the software development life cycle, such as requirements, or they may 
simply represent free-form observations, reviews, or explanations. 

The UML provides a graphical representation for comments and constraints, called a note, as 
Figure 6-1 shows. This notation permits you to visualize a comment directly. In conjunction with 
the proper tools, notes also give you a placeholder to link to or embed other documents. 

Figure 6-1 Notes 

 
Stereotypes, tagged values, and constraints are the mechanisms provided by the UML to let you 
add new building blocks, create new properties, and specify new semantics. For example, if you 
are modeling a network, you might want to have symbols for routers and hubs; you can use 
stereotyped nodes to make these things appear as primitive building blocks. Similarly, if you are 
part of your project's release team, responsible for assembling, testing, and then deploying 
releases, you might want to keep track of the version number and test results for each major 
subsystem. You can use tagged values to add this information to your models. Finally, if you are 
modeling hard real time systems, you might want to adorn your models with information about 
time budgets and deadlines; you can use constraints to capture these timing requirements. 

The UML provides a textual representation for stereotypes, tagged values, and constraints, as 
Figure 6-2 shows. Stereotypes also let you introduce new graphical symbols so that you can 
provide visual cues to your models that speak the language of your domain and your 
development culture. 



Figure 6-2 Stereotypes, Tagged Values, and Constraints 

 

Terms and Concepts 
A note is a graphical symbol for rendering constraints or comments attached to an element or a 
collection of elements. Graphically, a note is rendered as a rectangle with a dog-eared corner, 
together with a textual or graphical comment. 

A stereotype is an extension of the vocabulary of the UML, allowing you to create new kinds of 
building blocks similar to existing ones but specific to your problem. Graphically, a stereotype is 
rendered as a name enclosed by guillemets and placed above the name of another element. As 
an option, the stereotyped element may be rendered by using a new icon associated with that 
stereotype. 

A tagged value is an extension of the properties of a UML element, allowing you to create new 
information in that element's specification. Graphically, a tagged value is rendered as a string 
enclosed by brackets and placed below the name of another element. 

A constraint is an extension of the semantics of a UML element, allowing you to add new rules or 
to modify existing ones. Graphically, a constraint is rendered as a string enclosed by brackets 
and placed near the associated element or connected to that element or elements by 
dependency relationships. As an alternative, you can render a constraint in a note. 

Notes 

A note that renders a comment has no semantic impact, meaning that its contents do not alter the 
meaning of the model to which it is attached. This is why notes are used to specify things like 
requirements, observations, reviews, and explanations, in addition to rendering constraints. 

Notes may be attached to more than one element by usingdependencies, as discussed in 
Chapter 5. 

A note may contain any combination of text or graphics. If your implementation allows it, you can 
put a live URL inside a note, or even link to or embed another document. In this way, you can use 
the UML to organize all the artifacts you might generate or use during development, as Figure 6-
3 illustrates. 

Figure 6-3 Notes 



 
Note 

The UML specifies one standard stereotype that applies to notes• requirements. This 
stereotype names a common category of notes• those used to state some 
responsibility or obligation. 

 

Other Adornments 

The basic notation for an association, along with some of its adornments, are discussed in 
Chapters 5 and 10. 

Adornments are textual or graphical items that are added to an element's basic notation and are 
used to visualize details from the element's specification. For example, the basic notation for an 
association is a line, but this may be adorned with such details as the role and multiplicity of each 
end. In using the UML, the general rule to follow is this: Start with the basic notation for each 
element and then add other adornments only as they are necessary to convey specific 
information that is important to your model. 

Most adornments are rendered by placing text near the element of interest or by adding a graphic 
symbol to the basic notation. However, sometimes you'll want to adorn an element with more 
detail than can be accommodated by simple text or graphics. In the case of such things as 
classes, components, and nodes, you can add an extra compartment below the usual 
compartments to provide this information, as Figure 6-4 shows. 

Figure 6-4 Extra Compartments 



 
Note 

Unless it's obvious by its content, it's good practice to name any extra compartment 
explicitly so that there is no confusion about its meaning. It's also good practice to use 
extra compartments sparingly, because if overused, they make diagrams cluttered. 

 

Stereotypes 

These four basic elements of the UML are discussed in Chapter 2. 

The UML provides a language for structural things, behavioral things, grouping things, and 
notational things. These four basic kinds of things address the overwhelming majority of the 
systems you'll need to model. However, sometimes you'll want to introduce new things that speak 
the vocabulary of your domain and look like primitive building blocks. 

TheRational Unified Process is summarized in Appendix C. 

A stereotype is not the same as a parent class in a parent/child generalization relationship. 
Rather, you can think of a stereotype as a metatype, because each one creates the equivalent of 
a new class in the UML's metamodel. For example, if you are modeling a business process, you'll 
want to introduce things like workers, documents, and policies. Similarly, if you are following a 
development process, such as the Rational Unified Process, you'll want to model using boundary, 
control, and entity classes. This is where the real value of stereotypes comes in. When you 
stereotype an element such as a node or a class, you are in effect extending the UML by creating 
a new building block just like an existing one but with its own special properties (each stereotype 
may provide its own set of tagged values), semantics (each stereotype may provide its own 
constraints), and notation (each stereotype may provide its own icon). 



In its simplest form, a stereotype is rendered as a name enclosed by guillemets (for example, 
»nameᑺ) and placed above the name of another element. As a visual cue, you may define an 
icon for the stereotype and render that icon to the right of the name (if you are using the basic 
notation for the element) or use that icon as the basic symbol for the stereotyped item. All three of 
these approaches are illustrated in Figure 6-5. 

Figure 6-5 Stereotypes 

 
The UML's defined stereotypes are discussed in Appendix B. 

Note 

When you define an icon for a stereotype, consider using color as an accent to provide 
a subtle visual cue (but use color sparingly). The UML lets you use any shape for such 
icons, and if your implementation permits it, these icons might appear as primitive 
tools so that users who create UML diagrams will have a palette of things that look 
basic to them and speak the vocabulary of their domain. 

 

Tagged Values 

Every thing in the UML has its own set of properties: classes have names, attributes, and 
operations; associations have names and two or more ends (each with its own properties); and 
so on. With stereotypes, you can add new things to the UML; with tagged values, you can add 
new properties. 

Attributes are discussed in Chapters 4 and 9. 

You can define tags for existing elements of the UML, or you can define tags that apply to 
individual stereotypes so that everything with that stereotype has that tagged value. A tagged 
value is not the same as a class attribute. Rather, you can think of a tagged value as metadata 
because its value applies to the element itself, not its instances. For example, as Figure 6-6 
shows, you might want to specify the number of processors installed on each kind of node in a 
deployment diagram, or you might want to require that every component be stereotyped as a 
library if it is intended to be deployed on a client or a server. 

Figure 6-6 Tagged Values 



 
In its simplest form, a tagged value is rendered as a string enclosed by brackets and placed 
below the name of another element. That string includes a name (the tag), a separator (the 
symbol =), and a value (of the tag). You can specify just the value if its meaning is unambiguous, 
such as when the value is the name of enumeration. 

The UML's The UML's defined tagged values are discussed in Appendix B. 

Note 

One of the most common uses of tagged values is to specify properties that are 
relevant to code generation or configuration management. For example, you can use 
tagged values to specify the programming language to which you map a particular 
class. Similarly, you can use tagged values to specify the author and version of a 
component. 

 

Constraints 

Time and space constraints, commonly used when modeling real time systems, are discussed in 
Chapter 23. 

Everything in the UML has its own semantics. Generalization implies the Liskov substitution 
principle, and multiple associations connected to one class denote distinct relationships. With 
constraints, you can add new semantics or change existing rules. A constraint specifies 
conditions that must be held true for the model to be well-formed. For example, as Figure 6-7 
shows, you might want to specify that, across a given association, communication is encrypted. 
Similarly, you might want to specify that among a set of associations, only one is manifest at a 
time. 

Figure 6-7 Constraint 



 
The UML's defined constraints are discussed in Appendix B. 

Note 

Constraints may be written as free-form text. If you want to specify your semantics 
more precisely, you can use the UML's Object Constraint Language (OCL), described 
further in The The Unified Modeling Language Reference Manual. 

 
Constraints may be attached to more than one element by using dependencies, as discussed in 
Chapter 5. 

A constraint is rendered as a string enclosed by brackets and placed near the associated 
element. This notation is also used as an adornment to the basic notation of an element to 
visualize parts of an element's specification that have no graphical cue. For example, some 
properties of associations (order and changeability) are rendered using constraint notation. 

Standard Elements 

The UML's standard elements are summarized in Appendix B; classifiers are discussed in 
Chapter 9. 

The UML defines a number of standard stereotypes for classifiers, components, relationships, 
and other modeling elements. There is one standard stereotype, mainly of interest to tool 
builders, that lets you model stereotypes themselves. 

� 
stereotype  

Specifies that the classifier is a stereotype that may be applied to other 
elements 

You'll use this stereotype when you want to explicitly model the stereotypes you've defined for 
your project. 

The UML also specifies one standard tagged value that applies to all modeling elements. 



� 
documentation  

Specifies a comment, description, or explanation of the element to which it 
is attached 

You'll use this tagged value when you want to attach a comment directly to the specification of an 
element, such as a class. 

Common Modeling Techniques 
Modeling Comments 

The most common purpose for which you'll use notes is to write down free-form observations, 
reviews, or explanations. By putting these comments directly in your models, your models can 
become a common repository for all the disparate artifacts you'll create during development. You 
can even use notes to visualize requirements and show how they tie explicitly to the parts of your 
model. 

To model a comment, 

• Put your comment as text in a note and place it adjacent to the element to which it refers. 
You can show a more explicit relationship by connecting a note to its elements using a 
dependency relationship. 

• Remember that you can hide or make visible the elements of your model as you see fit. 
This means that you don't have to make your comments visible everywhere the elements 
to which it is attached are visible. Rather, expose your comments in your diagrams only 
insofar as you need to communicate that information in that context. 

• If your comment is lengthy or involves something richer than plain text, consider putting 
your comment in an external document and linking or embedding that document in a note 
attached to your model. 

• As your model evolves, keep those comments that record significant decisions that 
cannot be inferred from the model itself, and• unless they are of historic interest•
discard the others. 

Simplegeneralization is discussed in Chapter 5; advanced forms of generalization are discussed 
in Chapter 10. 

For example, Figure 6-8 shows a model that's a work in progress of a class hierarchy, showing 
some requirements that shape the model, as well as some notes from a design review. 

Figure 6-8 Modeling Comments 



 
In this example, most of the comments are simple text (such as the note to Mary), but one of 
them (the note at the bottom of the diagram) provides a hyperlink to another document. 

Modeling New Building Blocks 

The UML's building blocks• classes, interfaces, collaborations, components, nodes, 
associations, and so on• are generic enough to address most of the things you'll want to model. 
However, if you want to extend your modeling vocabulary or give distinctive visual cues to certain 
kinds of abstractions that often appear in your domain, you need to use stereotypes. 

To model new building blocks, 

• Make sure there's not already a way to express what you want by using basic UML. If you 
have a common modeling problem, chances are there's already some standard 
stereotype that will do what you want. 

Building hierarchies ofstereotypes is discussed in Chapter 10. 

• If you're convinced there's no other way to express these semantics, identify the primitive 
thing in the UML that's most like what you want to model (for example, class, interface, 
component, node, association, and so on) and define a new stereotype for that thing. 
Remember that you can define hierarchies of stereotypes so that you can have general 
kinds of stereotypes along with their specializations (but as with any hierarchy, use this 
sparingly). 

• Specify the common properties and semantics that go beyond the basic element being 
stereotyped by defining a set of tagged values and constraints for the stereotype. 

• If you want these stereotype elements to have a distinctive visual cue, define a new icon 
for the stereotype. 

Instances are discussed in Chapter 13; roles are discussed in Chapter 11; activity diagrams 
are discussed in Chapter 19. 

For example, suppose you are using activity diagrams to model a business process involving the 
flow of coaches and teams through a sporting event. In this context, it would make sense to 
visually distinguish coaches and teams from one another and from the other things in this 



domain, such as events and divisions. As Figure 6-9 shows, there are two things that stand 
out• Coach objects and Team objects. These are not just plain kinds of classes. Rather, they are 
now primitive building blocks that you can use in this context. You can create these new building 
blocks by defining a coach and team stereotype and applying them to UML's classes. In this 
figure, the anonymous instances called :Coach and :Team (the latter shown in various states•
namely, unregistered, registered, and finished) appear using the icons associated with 
these stereotypes. 

Figure 6-9 Modeling New Building Blocks. 

 
Modeling New Properties 

The basic properties of the UML's building blocks• attributes and operations for classes, the 
contents of packages, and so on• are generic enough to address most of the things you'll want to 
model. However, if you want to extend the properties of these basic building blocks (or the new 
building blocks you create using stereotypes), you need to use tagged values. 

To model new properties, 

• First, make sure there's not already a way to express what you want by using basic UML. 
If you have a common modeling problem, chances are that there's already some 
standard tagged value that will do what you want. 

• If you're convinced there's no other way to express these semantics, add this new 
property to an individual element or a stereotype. The rules of generalization apply•
tagged values defined for one kind of element apply to its children. 

Subsystems are discussed in Chapter 31. 



For example, suppose you want to tie the models you create to your project's configuration 
management system. Among other things, this means keeping track of the version number, 
current check in/check out status, and perhaps even the creation and modification dates of each 
subsystem. Because this is process-specific information, it is not a basic part of the UML, 
although you can add this information as tagged values. Furthermore, this information is not just a 
class attribute either. A subsystem's version number is part of its metadata, not part of the model. 

Figure 6-10 shows four subsystems, each of which has been extended to include its version 
number and status. In the case of the Billing subsystem, one other tagged value is shown•
the person who has currently checked out the subsystem. 

Figure 6-10 Modeling New Properties 

 
Note 

The values of tags such as version and status are things that can be set by tools. 
Rather than setting these values in your model by hand, you can use a development 
environment that integrates your configuration management tools with your modeling 
tools to maintain these values for you. 

 



Modeling New Semantics 

When you create a model using the UML, you work within the rules the UML lays down. That's a 
good thing, because it means that you can communicate your intent without ambiguity to anyone 
else who knows how to read the UML. However, if you find yourself needing to express new 
semantics about which the UML is silent or that you need to modify the UML's rules, then you 
need to write a constraint. 

To model new semantics, 

• First, make sure there's not already a way to express what you want by using basic UML. 
If you have a common modeling problem, chances are that there's already some 
standard constraint that will do what you want. 

• If you're convinced there's no other way to express these semantics, write your new 
semantics as text in a constraint and place it adjacent to the element to which it refers. 
You can show a more explicit relationship by connecting a constraint to its elements 
using a dependency relationship. 

• If you need to specify your semantics more precisely and formally, write your new 
semantics using OCL. 

For example, Figure 6-11 models a small part of a corporate human resources system. 

Figure 6-11 Modeling New Semantics 

 
This diagram shows that each Person may be a member of zero or more Departments and 
that each Department must have at least one Person as a member. This diagram goes on to 
indicate that each Department must have exactly one Person as a manager and every Person 
may be the manager of zero or more Departments. All of these semantics can be expressed 
using simple UML. However, to assert that a manager must also be a member of the department 
is something that cuts across multiple associations and cannot be expressed using simple UML. 
To state this invariant, you have to write a constraint that shows the manager as a subset of the 



members of the Department, connecting the two associations and the constraint by a 
dependency from the subset to the superset. 

Hints and Tips 
When you adorn a model with notes, 

• Use notes only for those requirements, observations, reviews, and explanations that you 
can't express simply or meaningfully using existing features of the UML. 

• Use notes as a kind of electronic sticky note, to keep track of your work in progress. 

When you draw notes, 

• Don't clutter your models with large blocks of comments. Rather, if you really need a long 
comment, use notes as a placeholder to link to or embed a document that contains the 
full comment. 

When you extend a model with stereotypes, tagged values, or constraints, 

• Standardize on a small set of stereotypes, tagged values, and constraints to use on your 
project, and avoid letting individual developers create lots of new extensions. 

• Chose short, meaningful names for your stereotypes and tagged values. 

• Where precision can be relaxed, use free-form text for specifying constraints. If you need 
more rigor, use the OCL to write constraint expressions. 

When you draw a stereotype, tagged value, or constraint, 

• Use graphical stereotypes sparingly. You can totally change the basic notation of the 
UML with stereotypes, but in so doing, you'll make it impossible for anyone else to 
understand your models. 

• Consider using simple color or shading for graphical stereotypes, as well as more 
complicated icons. Simple notations are generally the best, and even the most subtle 
visual cues can go a long way in communicating meaning. 

Chapter 7. Diagrams 
In this chapter 

• Diagrams, views, and models 

• Modeling different views of a system 

• Modeling different levels of abstraction 

• Modeling complex views 

• Organizing diagrams and other artifacts 

Modeling is discussed in Chapter 1. 

When you model something, you create a simplification of reality so that you can better 
understand the system you are developing. Using the UML, you build your models from basic 



building blocks, such as classes, interfaces, collaborations, components, nodes, dependencies, 
generalizations, and associations. 

Diagrams are the means by which you view these building blocks. A diagram is a graphical 
presentation of a set of elements, most often rendered as a connected graph of vertices (things) 
and arcs (relationships). You use diagrams to visualize your system from different perspectives. 
Because no complex system can be understood in its entirety from only one perspective, the 
UML defines a number of diagrams so that you can focus on different aspects of your system 
independently. 

Good diagrams make the system you are developing understandable and approachable. 
Choosing the right set of diagrams to model your system forces you to ask the right questions 
about your system and helps to illuminate the implications of your decisions. 

Getting Started 
When you work with an architect to design a house, you start with three things: a list of wants 
(such as "I want a house with three bedrooms" and "I want to pay no more than x"), a few simple 
sketches or pictures from other houses representing some of its key features (such as a picture of 
an entry with a circular staircase), and some general idea of style (such as "We'd like a French 
country look with hints of California coastal"). The job of the architect is to take these incomplete, 
ever-changing, and possibly contradictory requirements and turn them into a design. 

To do that, the architect will probably start with a blueprint of a basic floor plan. This artifact 
provides a vehicle for you and your architect to visualize the final house, to specify details, and to 
document decisions. At each review, you'll want to make some changes, such as moving walls 
about, rearranging rooms, placing windows and doors. Early on, these blueprints change often. 
As the design matures and you become satisfied that you have a design that best fits all the 
constraints of form, function, time, and money, these blueprints will stabilize to the point at which 
they can be used for constructing your house. Even while your house is being built, you'll 
probably change some of these diagrams and create some new ones, as well. 

Along the way, you'll want to see views of the house other than just the floor plan. For example, 
you'll want to see an elevation plan, showing the house from different sides. As you start 
specifying details so that the job can be meaningfully costed out, your architect will need to create 
electrical plans, plans for heating and ventilation, and plans for water and sewer connections. If 
your design requires some unusual feature (such as a long, unsupported span over the 
basement) or you have a feature that's important to you (such as the placement of a fireplace so 
that you can put a home theater near it), you and your architect will want to create some sketches 
that highlight those details. 

The practice of creating diagrams to visualize systems from different perspectives is not limited to 
the construction industry. You'll find this in every engineering discipline involving the creation of 
complex systems, from civil engineering to aeronautical engineering, ship building, 
manufacturing, and software. 

The five views of anarchitecture are discussed in Chapter 2. 

In the context of software, there are five complementary views that are most important in 
visualizing, specifying, constructing, and documenting a software architecture: the use case view, 
the design view, the process view, the implementation view, and the deployment view. Each of 
these views involves structural modeling (modeling static things), as well as behavioral modeling 
(modeling dynamic things). Together, these different views capture the most important decisions 
about the system. Individually, each of these views lets you focus attention on one perspective of 
the system so that you can reason about your decisions with clarity. 

Modeling the architecture of a system is discussed in Chapter 31. 



When you view a software system from any perspective using the UML, you use diagrams to 
organize the elements of interest. The UML defines nine kinds of diagrams, which you can mix 
and match to assemble each view. For example, the static aspects of a system's implementation 
view might be visualized using component diagrams; the dynamic aspects of the same 
implementation view might be visualized using interaction diagrams. Similarly, the static aspects 
of a system's database might be visualized using class diagrams; its dynamic aspects might be 
visualized using collaboration diagrams. 

Of course, you are not limited to these nine diagrams. In the UML, these nine are defined 
because they represent the most common packaging of viewed elements. To fit the needs of your 
project or organization, you can create your own kinds of diagrams to view UML elements in 
different ways. 

This incremental and iterative process is summarized in Appendix C. 

You'll use the UML's diagrams in two basic ways: to specify models from which you'll construct an 
executable system (forward engineering) and to reconstruct models from parts of an executable 
system (reverse engineering). Either way, just like a building architect, you'll tend to create your 
diagrams incrementally (crafting them one piece at a time) and iteratively (repeating the process 
of design a little, build a little). 

Terms and Concepts 
Systems, models, and views are discussed in Chapter 31. 

A system is a collection of subsystems organized to accomplish a purpose and described by a set 
of models, possibly from different viewpoints. A subsystem is a grouping of elements, of which 
some constitute a specification of the behavior offered by the other contained elements. A model 
is a semantically closed abstraction of a system, meaning that it represents a complete and self-
consistent simplification of reality, created in order to better understand the system. In the context 
of architecture, a view is a projection into the organization and structure of a system's model, 
focused on one aspect of that system. A diagram is the graphical presentation of a set of 
elements, most often rendered as a connected graph of vertices (things) and arcs (relationships). 

To put it another way, a system represents the thing you are developing, viewed from different 
perspectives by different models, with those views presented in the form of diagrams. 

A diagram is just a graphical projection into the elements that make up a system. For example, 
you might have several hundred classes in the design of a corporate human resources system. 
You could never visualize the structure or behavior of that system by staring at one large diagram 
containing all these classes and all their relationships. Instead, you'd want to create several 
diagrams, each focused on one view. For example, you might find one class diagram that 
includes classes, such as Person, Department, and Office, assembled to construct a 
database schema. You might find some of these same classes, along with other classes, in 
another diagram that presents an API that's used by client applications. You'd likely see some of 
these same classes mentioned in an interaction diagram, specifying the semantics of a 
transaction that reassigns a Person to a new Department. 

As this example shows, the same thing in a system (such as the class Person) may appear 
multiple times in the same diagram or even in different diagrams. In each case, it's the same 
thing. Each diagram provides a view into the elements that make up the system. 

In modeling real systems, no matter what the problem domain, you'll find yourself creating the 
same kinds of diagrams, because they represent common views into common models. Typically, 
you'll view the static parts of a system using one of the four following diagrams. 

1. Class diagram 



2. Object diagram 

3. Component diagram 

4. Deployment diagram 

You'll often use five additional diagrams to view the dynamic parts of a system. 

1. Use case diagram 

2. Sequence diagram 

3. Collaboration diagram 

4. Statechart diagram 

5. Activity diagram 

The UML defines these nine kinds of diagrams. 

Packages are discussed in Chapter 12. 

Every diagram you create will most likely be one of these nine or occasionally of another kind, 
defined for your project or organization. Every diagram must have a name that's unique in its 
context so that you can refer to a specific diagram and distinguish one from another. For anything 
but the most trivial system, you'll want to organize your diagrams into packages. 

You can project any combination of elements in the UML in the same diagram. For example, you 
might show both classes and objects in the same diagram (a common thing to do), or you might 
even show both classes and components in the same diagram (legal, but less common). 
Although there's nothing that prevents you from placing wildly disparate kinds of modeling 
elements in the same diagram, it's more common for you to have roughly the same kinds of 
things in one diagram. In fact, the UML's defined diagrams are named after the element you'll 
most often place in each. For example, if you want to visualize a set of classes and their 
relationships, you'll use a class diagram. Similarly, if you want to visualize a set of components, 
you'll use a component diagram. 

Note 

In practice, all the diagrams you'll create will be two-dimensional, meaning that they 
are just flat graphs of vertices and arcs that are drawn on a sheet of paper, a 
whiteboard, the back of an envelope, or on a computer display. The UML allows you to 
create three-dimensional diagrams, meaning that they are graphs with depth, allowing 
you to "swim" through a model. Some virtual reality research groups have already 
demonstrated this advanced use of the UML. 

 

Structural Diagrams 

The UML's four structural diagrams exist to visualize, specify, construct, and document the static 
aspects of a system. You can think of the static aspects of a system as representing its relatively 
stable skeleton and scaffolding. Just as the static aspects of a house encompass the existence 
and placement of such things as walls, doors, windows, pipes, wires, and vents, so too do the 
static aspects of a software system encompass the existence and placement of such things as 
classes, interfaces, collaborations, components, and nodes. 



The UML's structural diagrams are roughly organized around the major groups of things you'll find 
when modeling a system. 

1. Class diagram  Classes, interfaces, and collaborations  
2. Object diagram  Objects  
3. Component diagram  Components  
4. Deployment diagram  Nodes  
Class diagrams are discussed in Chapter 8. 

Class Diagram   

A class diagram shows a set of classes, interfaces, and collaborations and their relationships. 
Class diagrams are the most common diagram found in modeling object-oriented systems. You 
use class diagrams to illustrate the static design view of a system. Class diagrams that include 
active classes are used to address the static process view of a system. 

Object diagrams are discussed in Chapter 14 

Object Diagram   

An object diagram shows a set of objects and their relationships. You use object diagrams to 
illustrate data structures, the static snapshots of instances of the things found in class diagrams. 
Object diagrams address the static design view or static process view of a system just as do 
class diagrams, but from the perspective of real or prototypical cases. 

Component diagrams are discussed in Chapter 29. 

Component Diagram   

A component diagram shows a set of components and their relationships. You use component 
diagrams to illustrate the static implementation view of a system. Component diagrams are 
related to class diagrams in that a component typically maps to one or more classes, interfaces, 
or collaborations. 

Deployment diagrams are discussed in Chapter 30. 

Deployment Diagram   

A deployment diagram shows a set of nodes and their relationships. You use deployment 
diagrams to illustrate the static deployment view of an architecture. Deployment diagrams are 
related to component diagrams in that a node typically encloses one or more components. 

Note 

There are some common variants of these four diagrams, named after their primary 
contents. For example, you might create a subsystem diagram to illustrate the 
structural decomposition of a system into subsystems. A subsystem diagram is just a 
class diagram that contains, primarily, subsystems. 

 

Behavioral Diagrams 

The UML's five behavioral diagrams are used to visualize, specify, construct, and document the 
dynamic aspects of a system. You can think of the dynamic aspects of a system as representing 



its changing parts. Just as the dynamic aspects of a house encompass airflow and traffic through 
the rooms of a house, so too do the dynamic aspects of a software system encompass such 
things as the flow of messages over time and the physical movement of components across a 
network. 

The UML's behavioral diagrams are roughly organized around the major ways you can model the 
dynamics of a system. 

1. Use case diagram  Organizes the behaviors of the system  
2. Sequence diagram  Focused on the time ordering of messages  
3. Collaboration 
diagram  

Focused on the structural organization of objects that send and receive 
messages  

4. Statechart diagram  Focused on the changing state of a system driven by events  
5. Activity diagram  Focused on the flow of control from activity to activity 
Use case diagrams are discussed in Chapter 17. 

Use Case Diagram   

A use case diagram shows a set of use cases and actors (a special kind of class) and their 
relationships. You apply use case diagrams to illustrate the static use case view of a system. Use 
case diagrams are especially important in organizing and modeling the behaviors of a system. 

The next two diagrams and the last two diagrams are semantically equivalent, which means that 
you can model the dynamics of a system using one kind of behavioral diagram and then 
transform it to another kind of diagram without loss of information. This lets you reason about 
different aspects of your system's dynamics. For example, you might want first to create a 
sequence diagram that illustrates the time ordering of messages and then turn that into a 
collaboration diagram so that you can develop the structural relationships among the classes 
whose objects participate in this collaboration (you can go from collaboration diagrams to 
sequence diagrams, as well). Similarly, you might want to start with a statechart diagram to 
illustrate the event-driven response of the system and then turn it into an activity diagram that 
focuses on the flow of control (you can also go from activity diagrams to statechart diagrams). 
The reason that the UML provides these semantically equivalent diagrams is that modeling the 
dynamics of a system is just plain hard, and often you must attack a wicked problem from more 
than one angle at the same time. 

Interaction diagram is the collective name given to sequence diagrams and collaboration 
diagrams. All sequence diagrams and collaborations are interaction diagrams, and an interaction 
diagram is either a sequence diagram or a collaboration diagram. 

Sequence diagrams are discussed in Chapter 18. 

Sequence Diagram   

A sequence diagram is an interaction diagram that emphasizes the time ordering of messages. A 
sequence diagram shows a set of objects and the messages sent and received by those objects. 
The objects are typically named or anonymous instances of classes, but may also represent 
instances of other things, such as collaborations, components, and nodes. You use sequence 
diagrams to illustrate the dynamic view of a system. 

Collaboration diagrams are discussed in Chapter 18. 

Collaboration Diagram   

A collaboration diagram is an interaction diagram that emphasizes the structural organization of 
the objects that send and receive messages. A collaboration diagram shows a set of objects, 



links among those objects, and messages sent and received by those objects. The objects are 
typically named or anonymous instances of classes, but may also represent instances of other 
things, such as collaborations, components, and nodes. You use collaboration diagrams to 
illustrate the dynamic view of a system. 

Note 

Sequence and collaboration diagrams are isomorphic, meaning that you can convert 
from one to the other without loss of information. 

 

Statechart diagrams are discussed in Chapter 24. 

Statechart Diagram   

A statechart diagram shows a state machine, consisting of states, transitions, events, and 
activities. You use statechart diagrams to illustrate the dynamic view of a system. They are 
especially important in modeling the behavior of an interface, class, or collaboration. Statechart 
diagrams emphasize the event-ordered behavior of an object, which is especially useful in 
modeling reactive systems. 

Activity diagrams, a special case of statechart diagrams, are discussed in Chapter 19. 

Activity Diagram   

An activity diagram shows the flow from activity to activity within a system. An activity shows a set 
of activities, the sequential or branching flow from activity to activity, and objects that act and are 
acted upon. You use activity diagrams to illustrate the dynamic view of a system. Activity 
diagrams are especially important in modeling the function of a system. Activity diagrams 
emphasize the flow of control among objects. 

Note 

There are obvious practical limitations to illustrating something that's inherently 
dynamic (the behavior of a system) using diagrams (inherently static artifacts, 
especially when you draw them on a sheet of paper, a whiteboard, or the back of an 
envelope). Rendered on a computer display, there are opportunities for animating 
behavioral diagrams so that they either simulate an executable system or mirror the 
actual behavior of a system that's executing. The UML allows you to create dynamic 
diagrams and to use color or other visual cues to "run" the diagram. Some tools have 
already demonstrated this advanced use of the UML. 

Common Modeling Techniques 

Modeling Different Views of a System 

When you model a system from different views, you are in effect constructing your system 
simultaneously from multiple dimensions. By choosing the right set of views, you set up a process 
that forces you to ask good questions about your system and to expose risks that need to be 
attacked. If you do a poor job of choosing these views or if you focus on one view at the expense 
of all others, you run the risk of hiding issues and deferring problems that will eventually destroy 
any chance of success. 

To model a system from different views, 



• Decide which views you need to best express the architecture of your system and to 
expose the technical risks to your project. The five views of an architecture described 
earlier are a good starting point. 

• For each of these views, decide which artifacts you need to create to capture the 
essential details of that view. For the most part, these artifacts will consist of various UML 
diagrams. 

• As part of your process planning, decide which of these diagrams you'll want to put under 
some sort of formal or semi-formal control. These are the diagrams for which you'll want 
to schedule reviews and to preserve as documentation for the project. 

• Allow room for diagrams that are thrown away. Such transitory diagrams are still useful 
for exploring the implications of your decisions and for experimenting with changes. 

For example, if you are modeling a simple monolithic application that runs on a single machine, 
you might need only the following handful of diagrams. 

� Use case view  Use case diagrams 
� Design view  Class diagrams (for structural modeling) Interaction diagrams (for 

behavioral modeling) 
� Process view  None required 
� Implementation 
view  

None required 

� Deployment view  None required 
If yours is a reactive system or if it focuses on process flow, you'll probably want to include 
statechart diagrams and activity diagrams, respectively, to model your system's behavior. 

Similarly, if yours is a client/server system, you'll probably want to include component diagrams 
and deployment diagrams to model the physical details of your system. 

Finally, if you are modeling a complex, distributed system, you'll need to employ the full range of 
the UML's diagrams in order to express the architecture of your system and the technical risks to 
your project, as in the following. 

� Use case view Use case diagrams Activity diagrams (for behavioral modeling) 
� Design view Class diagrams (for structural modeling) Interaction diagrams (for behavioral 

modeling) Statechart diagrams (for behavioral modeling) 
� Process view Class diagrams (for structural modeling) Interaction diagrams (for behavioral 

modeling) 
� Implementation 
view 

Component diagram 

� Deployment view Deployment diagrams 

Modeling Different Levels of Abstraction 

Not only do you need to view a system from several angles, you'll also find people involved in 
development who need the same view of the system but at different levels of abstraction. For 
example, given a set of classes that capture the vocabulary of your problem space, a 
programmer might want a detailed view down to the level of each class's attributes, operations, 
and relationships. On the other hand, an analyst who's walking through some use case scenarios 
with an end user will likely want only a much elided view of these same classes. In this context, 
the programmer is working at a lower level of abstraction and the analysis and end user are 
working at a higher level of abstraction, but all are working from the same model. In fact, because 
diagrams are just a graphical presentation of the elements that make up a model, you can create 



several diagrams against the same model or different models, each hiding or exposing different 
sets of these elements and each showing different levels of detail. 

Basically, there are two ways to model a system at different levels of abstraction: by presenting 
diagrams with different levels of detail against the same model, or by creating models at different 
levels of abstraction with diagrams that trace from one model to another. 

To model a system at different levels of abstraction by presenting diagrams with different levels of 
detail, 

• Consider the needs of your readers, and start with a given model. 

• If your reader is using the model to construct an implementation, she'll need diagrams 
that are at a lower level of abstraction, which means that they'll need to reveal a lot of 
detail. If she is using the model to present a conceptual model to an end user, she'll need 
diagrams that are at a higher level of abstraction, which means that they'll hide a lot of 
detail. 

• Depending on where you land in this spectrum of low-to-high levels of abstraction, create 
a diagram at the right level of abstraction by hiding or revealing the following four 
categories of things from your model: 

1. Building blocks and relationships:   

Hide those that are not relevant to the intent of your diagram or the needs of your 
reader. 

2. Adornments:   

Reveal only the adornments of these building blocks and relationships that are 
essential to understanding your intent. 

3. Flow:   

In the context of behavioral diagrams, expand only those messages or transitions 
that are essential to understanding your intent. 

4. Stereotypes:   

In the context of stereotypes used to classify lists of things, such as attributes 
and operations, reveal only those stereotyped items that are essential to 
understanding your intent. 

Messages are discussed in Chapter 15; transitions are discussed in Chapter 21; stereotypes 
are discussed in Chapter 6. 

The main advantage of this approach is that you are always modeling from a common semantic 
repository. The main disadvantage of this approach is that changes from diagrams at one level of 
abstraction may make obsolete diagrams at a different level of abstraction. 

To model a system at different levels of abstraction by creating models at different levels of 
abstraction, 

Tracedependencies are discussed in Chapter 31. 

• Consider the needs of your readers and decide on the level of abstraction that each 
should view, forming a separate model for each level. 



• In general, populate your models that are at a high level of abstraction with simple 
abstractions and your models that are at a low level of abstraction with detailed 
abstractions. Establish trace dependencies among the related elements of different 
models. 

• In practice, if you follow the five views of an architecture, there are four common 
situations you'll encounter when modeling a system at different levels of abstraction: 

1. Use cases and their realization:   

Use cases in a use case model will trace to collaborations in a design model. 

2. Collaborations and their realization:   

Collaborations will trace to a society of classes that work together to carry out the 
collaboration. 

3. Components and their design:   

Components in an implementation model will trace to the elements in a design model. 

4. Nodes and their components:   

Nodes in a deployment model will trace to components in an implementation model. 

Use cases are discussed in Chapter 16; collaborations are discussed in Chapter 27; 
components are discussed in Chapter 25; nodes are discussed in Chapter 26. 

The main advantage of the approach is that diagrams at different levels of abstraction remain 
more loosely coupled. This means that changes in one model will have less direct effect on other 
models. The main disadvantage of this approach is that you must spend resources to keep these 
models and their diagrams synchronized. This is especially true when your models parallel 
different phases of the software development life cycle, such as when you decide to maintain an 
analysis model separate from a design model. 

Interaction diagrams are discussed in Chapter 18. 

For example, suppose you are modeling a system for Web commerce• one of the main use 
cases of such a system would be for placing an order. If you're an analyst or an end user, you'd 
probably create some interaction diagrams at a high level of abstraction that show the action of 
placing an order, as in Figure 7-1. 

Figure 7-1 Interaction Diagram at a High Level of Abstraction 



 
On the other hand, a programmer responsible for implementing this scenario would have to build 
on this diagram, expanding certain messages and adding other players in this interaction, as in 
Figure 7-2. 

Figure 7-2 Interaction at a Low Level of Abstraction 

 
Both of these diagrams work against the same model, but at different levels of detail. It's 
reasonable to have many diagrams such as these, especially if your tools make it easy to 
navigate from one diagram to another. 

Modeling Complex Views 

No matter how you break up your models, there are times when you'll find it necessary to create 
large and complex diagrams. For example, if you want to analyze the entire schema of a 
database encompassing 100 or more abstractions, it really is valuable to study a diagram 
showing all these classes and their associations. In so doing, you'll be able to see common 



patterns of collaboration. If you were to show this model at a higher level of abstraction by eliding 
some detail, you'd lose the information necessary to make these insights. 

Packages are discussed in Chapter 12; collaborations are discussed in Chapter 27. 

To model complex views, 

• First, convince yourself there's no meaningful way to present this information at a higher 
level of abstraction, perhaps eliding some parts of the diagram and retaining the detail in 
other parts. 

• If you've hidden as much detail as you can and your diagram is still complex, consider 
grouping some of the elements in packages or in higher level collaborations, then render 
only those packages or collaborations in your diagram. 

• If your diagram is still complex, use notes and color as visual cues to draw the reader's 
attention to the points you want to make. 

• If your diagram is still complex, print it in its entirety and hang it on a convenient large 
wall. You lose the interactivity an online version of the diagram brings, but you can step 
back from the diagram and study it for common patterns. 

Hints and Tips 
When you create a diagram, 

• Remember that the purpose of a diagram in the UML is not to draw pretty pictures but, 
rather, to visualize, specify, construct, and document. Diagrams are a means to the end 
of deploying an executable system. 

• Not all diagrams are meant to be preserved. Consider building up diagrams on the fly by 
querying the elements in your models, and use these diagrams to reason about your 
system as it is being built. Many of these kinds of diagrams can be thrown away after 
they have served their purpose (but the semantics upon which they were created will 
remain as a part of the model). 

• Avoid extraneous or redundant diagrams. They clutter your models. 

• Reveal only enough detail in each diagram to address the issues for which it was 
intended. Extraneous information can distract the reader from the key point you're trying 
to make. 

• On the other hand, don't make your diagrams minimalist unless you really need to 
present something at a very high level of abstraction. Oversimplification can hide details 
that are important to reasoning about your models. 

• Keep a balance between the structural and behavioral diagrams in your system. Very few 
systems are totally static or totally dynamic. 

• Don't make your diagrams too big (ones that run more than several printed pages are 
hard to navigate) or too small (consider joining several trivial diagrams into one). 

• Give each diagram a meaningful name that clearly expresses its intent. 

• Keep your diagrams organized. Group them into packages according to view. 

• Don't obsess over the format of a diagram. Let tools help you. 



A well-structured diagram 

• Is focused on communicating one aspect of a system's view. 

• Contains only those elements that are essential to understanding that aspect. 

• Provides detail consistent with its level of abstraction (expose only those adornments that 
are essential to understanding). 

• Is not so minimalist that it misinforms the reader about semantics that are important. 

When you draw a diagram, 

• Give it a name that communicates its purpose. 

• Lay out its elements to minimize lines that cross. 

• Organize its elements spatially so that things that are semantically close are laid out 
physically close. 

• Use notes and color as visual cues to draw attention to important features of your 
diagram. 

Chapter 8. Class Diagrams 
In this chapter 

• Modeling simple collaborations 

• Modeling a logical database schema 

• Forward and reverse engineering 

Class diagrams are the most common diagram found in modeling object- oriented systems. A 
class diagram shows a set of classes, interfaces, and collaborations and their relationships. 

You use class diagrams to model the static design view of a system. For the most part, this 
involves modeling the vocabulary of the system, modeling collaborations, or modeling schemas. 
Class diagrams are also the foundation for a couple of related diagrams: component diagrams 
and deployment diagrams. 

Class diagrams are important not only for visualizing, specifying, and documenting structural 
models, but also for constructing executable systems through forward and reverse engineering. 

Getting Started 
When you build a house, you start with a vocabulary that includes basic building blocks, such as 
walls, floors, windows, doors, ceilings, and joists. These things are largely structural (walls have 
height, width, and thickness), but they're also somewhat behavioral (different kinds of walls can 
support different loads, doors open and close, there are constraints on the span of a unsupported 
floor). In fact, you can't consider these structural and behavioral features independently. Rather, 
when you build your house, you must consider how they interact. The process of architecting your 
house thus involves assembling these things in a unique and pleasing manner intended to satisfy 
all your functional and nonfunctional requirements. The blueprints you create to visualize your 
house and to specify its details to your contractors for construction are, in effect, graphical 
presentations of these things and their relationships. 



Building software has much the same characteristics except that, given the fluidity of software, 
you have the ability to define your own basic building blocks from scratch. With the UML, you use 
class diagrams to visualize the static aspects of these building blocks and their relationships and 
to specify their details for construction, as you can see in Figure 8-1. 

Figure 8-1 A Class Diagram 

 

Terms and Concepts 
A class diagram is a diagram that shows a set of classes, interfaces, and collaborations and their 
relationships. Graphically, a class diagram is a collection of vertices and arcs. 

Common Properties 

The general properties of diagrams are discussed in Chapter 7. 

A class diagram is just a special kind of diagram and shares the same common properties as do 
all other diagrams•  a name and graphical content that are a projection into a model. What 
distinguishes a class diagram from all other kinds of diagrams is its particular content. 



Contents 

Classes are discussed in Chapters 4 and 9; interfaces are discussed in Chapter 11; 
collaborations are discussed in Chapter 27; relationships are discussed in Chapters 5 and 10; 
packages are discussed in Chapter 12; subsystems are discussed in Chapter 31; instances 
are discussed in Chapter 13. 

Class diagrams commonly contain the following things: 

• Classes 

• Interfaces 

• Collaborations 

• Dependency, generalization, and association relationships 

Like all other diagrams, class diagrams may contain notes and constraints. 

Class diagrams may also contain packages or subsystems, both of which are used to group 
elements of your model into larger chunks. Sometimes, you'll want to place instances in your 
class diagrams, as well, especially when you want to visualize the (possibly dynamic) type of an 
instance. 

Note 

Component diagrams and deployment diagrams are similar to class diagrams, except 
that instead of containing classes, they contain components and nodes, respectively. 

 

Common Uses 

Design views are discussed in Chapter 2. 

You use class diagrams to model the static design view of a system. This view primarily supports 
the functional requirements of a system• the services the system should provide to its end users. 

When you model the static design view of a system, you'll typically use class diagrams in one of 
three ways. 

Modeling the vocabulary of a system is discussed in Chapter 4. 

1. To model the vocabulary of a system 

Modeling the vocabulary of a system involves making a decision about which abstractions are a 
part of the system under consideration and which fall outside its boundaries. You use class 
diagrams to specify these abstractions and their responsibilities. 

Collaborations are discussed in Chapter 27. 

2. To model simple collaborations 

A collaboration is a society of classes, interfaces, and other elements that work together to 
provide some cooperative behavior that's bigger than the sum of all the elements. For example, 
when you're modeling the semantics of a transaction in a distributed system, you can't just stare 



at a single class to understand what's going on. Rather, these semantics are carried out by a set 
of classes that work together. You use class diagrams to visualize and specify this set of classes 
and their relationships. 

Persistence is discussed in Chapter 23; modeling physical databases is discussed in Chapter 
29. 

3. To model a logical database schema 

Think of a schema as the blueprint for the conceptual design of a database. In many domains, 
you'll want to store persistent information in a relational database or in an object-oriented 
database. You can model schemas for these databases using class diagrams. 

Common Modeling Techniques 

Modeling Simple Collaborations 

No class stands alone. Rather, each works in collaboration with others to carry out some 
semantics greater than each individual. Therefore, in addition to capturing the vocabulary of your 
system, you'll also need to turn your attention to visualizing, specifying, constructing, and 
documenting the various ways these things in your vocabulary work together. You use class 
diagrams to represent such collaborations. 

When you create a class diagram, you just model a part of the things and relationships that make 
up your system's design view. For this reason, each class diagram should focus on one 
collaboration at a time. 

To model a collaboration, 

Mechanisms such as this are often coupled to use cases, as discussed in Chapter 16; scenarios 
are threads through a use case, as discussed in Chapter 15. 

• Identify the mechanism you'd like to model. A mechanism represents some function or 
behavior of the part of the system you are modeling that results from the interaction of a 
society of classes, interfaces, and other things. 

• For each mechanism, identify the classes, interfaces, and other collaborations that 
participate in this collaboration. Identify the relationships among these things, as well. 

• Use scenarios to walk through these things. Along the way, you'll discover parts of your 
model that were missing and parts that were just plain semantically wrong. 

• Be sure to populate these elements with their contents. For classes, start with getting a 
good balance of responsibilities. Then, over time, turn these into concrete attributes and 
operations. 

For example, Figure 8-2 shows a set of classes drawn from the implementation of an 
autonomous robot. The figure focuses on the classes involved in the mechanism for moving the 
robot along a path. You'll find one abstract class (Motor) with two concrete children, 
SteeringMotor and MainMotor. Both of these classes inherit the five operations of their 
parent, Motor. The two classes are, in turn, shown as parts of another class, Driver. The 
class PathAgent has a one-to-one association to Driver and a one-to-many association to 
CollisionSensor. No attributes or operations are shown for PathAgent, although its 
responsibilities are given. 

Figure 8-2 Modeling Simple Collaborations 



 
There are many more classes involved in this system, but this diagram focuses only on those 
abstractions that are directly involved in moving the robot. You'll see some of these same classes 
in other diagrams. For example, although not shown here, the class PathAgent collaborates 
with at least two other classes (Environment and GoalAgent) in a higher-level mechanism for 
managing the conflicting goals the robot might have at a given moment. Similarly, also not shown 
here, the classes CollisionSensor and Driver (and its parts) collaborate with another class 
(FaultAgent) in a mechanism responsible for continuously checking the robot's hardware for 
errors. By focusing on each of these collaborations in different diagrams, you provide an 
understandable view of the system from several angles. 

Modeling a Logical Database Schema 

Modeling thedistribution andmigration ofpersistent objects is discussed in Chapter 23; modeling 
physical databases is discussed in Chapter 29. 

Many of the systems you'll model will have persistent objects, which means that they can be 
stored in a database for later retrieval. Most often, you'll use a relational database, an object-
oriented database, or a hybrid object/relational database for persistent storage. The UML is well-
suited to modeling logical database schemas, as well as physical databases themselves. 

The UML's class diagrams are a superset of entity-relationship (E-R) diagrams, a common 
modeling tool for logical database design. Whereas classical E-R diagrams focus only on data, 



class diagrams go a step further by permitting the modeling of behavior, as well. In the physical 
database, these logical operations are generally turned into triggers or stored procedures. 

To model a schema, 

• Identify those classes in your model whose state must transcend the lifetime of their 
applications. 

• Create a class diagram that contains these classes and mark them as persistent (a 
standard tagged value). You can define your own set of tagged values to address 
database-specific details. 

• Expand the structural details of these classes. In general, this means specifying the 
details of their attributes and focusing on the associations and their cardinalities that 
structure these classes. 

• Watch for common patterns that complicate physical database design, such as cyclic 
associations, one-to-one associations, and n-ary associations. Where necessary, create 
intermediate abstractions to simplify your logical structure. 

• Consider also the behavior of these classes by expanding operations that are important 
for data access and data integrity. In general, to provide a better separation of concerns, 
business rules concerned with the manipulation of sets of these objects should be 
encapsulated in a layer above these persistent classes. 

• Where possible, use tools to help you transform your logical design into a physical 
design. 

Stereotypes are discussed in Chapter 6. 

Note 

Logical database design is beyond the scope of this book. The focus here is simply to 
show how you can model schemas using the UML. In practice, you'll end up using 
stereotypes tuned to the kind of database (relational or object-oriented) you are using. 

 

Figure 8-3 shows a set of classes drawn from an information system for a school. This figure 
expands upon an earlier class diagram, and you'll see the details of these classes revealed to a 
level sufficient to construct a physical database. Starting at the bottom-left of this diagram, you 
will find the classes named Student, Course, and Instructor. There's an association 
between Student and Course, specifying that students attend courses. Furthermore, every 
student may attend any number of courses and every course may have any number of students. 

Figure 8-3 Modeling a Schema 



 
Modeling primitive types is discussed in Chapter 4; aggregation is discussed in Chapters 5 and 
10. 

All six of these classes are marked as persistent, indicating that their instances are intended to 
live in a database or some other form of persistent store. This diagram also exposes the 
attributes of all six of these classes. Notice that all the attributes are primitive types. When you 
are modeling a schema, you'll generally want to model the relationship to any nonprimitive types 
using an explicit aggregation rather than an attribute. 

Two of these classes (School and Department) expose several operations for manipulating 
their parts. These operations are included because they are important to maintain data integrity 
(adding or removing a Department, for example, will have some rippling effects). There are 
many other operations that you might consider for these and the other classes, such as querying 
the prerequisites of a course before assigning a student. These are more business rules than 
they are operations for database integrity and so are best placed at a higher level of abstraction 
than this schema. 

Forward and Reverse Engineering 

The importance ofmodeling is discussed in Chapter 1. 

Modeling is important, but you have to remember that the primary product of a development team 
is software, not diagrams. Of course, the reason you create models is to predictably deliver at the 
right time the right software that satisfies the evolving goals of its users and the business. For this 
reason, it's important that the models you create and the implementations you deploy map to one 
another and do so in a way that minimizes or even eliminates the cost of keeping your models 
and your implementation in sync with one another. 

Activity diagrams are discussed in Chapter 19. 



For some uses of the UML, the models you create will never map to code. For example, if you are 
modeling a business process using activity diagrams, many of the activities you model will involve 
people, not computers. In other cases, you'll want to model systems whose parts are, from your 
level of abstraction, just a piece of hardware (although at another level of abstraction, it's a good 
bet that this hardware contains an embedded computer and software). 

In most cases, though, the models you create will map to code. The UML does not specify a 
particular mapping to any object-oriented programming language, but the UML was designed with 
such mappings in mind. This is especially true for class diagrams, whose contents have a clear 
mapping to all the industrial-strength object-oriented languages, such as Java, C++, Smalltalk, 
Eiffel, Ada, ObjectPascal, and Forte. The UML was also designed to map to a variety of 
commercial object-based languages, such as Visual Basic. 

Stereotypes and tagged values are discussed in Chapter 6. 

Note 

The mapping of the UML to specific implementation languages for forward and reverse 
engineering is beyond the scope of this book. In practice, you'll end up using 
stereotypes and tagged values tuned to the programming language you are using. 

 
Forward engineering is the process of transforming a model into code through a mapping to an 
implementation language. Forward engineering results in a loss of information, because models 
written in the UML are semantically richer than any current object-oriented programming 
language. In fact, this is a major reason why you need models in addition to code. Structural 
features, such as collaborations, and behavioral features, such as interactions, can be visualized 
clearly in the UML, but not so clearly from raw code. 

To forward engineer a class diagram, 

• Identify the rules for mapping to your implementation language or languages of choice. 
This is something you'll want to do for your project or your organization as a whole. 

• Depending on the semantics of the languages you choose, you may have to constrain 
your use of certain UML features. For example, the UML permits you to model multiple 
inheritance, but Smalltalk permits only single inheritance. You can either choose to 
prohibit developers from modeling with multiple inheritance (which makes your models 
language-dependent) or develop idioms that transform these richer features into the 
implementation language (which makes the mapping more complex). 

• Use tagged values to specify your target language. You can do this at the level of 
individual classes if you need precise control. You can also do so at a higher level, such 
as with collaborations or packages. 

• Use tools to forward engineer your models. 

Patterns are discussed in Chapter 28. 

Figure 8-4 illustrates a simple class diagram specifying an instantiation of the chain of 
responsibility pattern. This particular instantiation involves three classes: Client, 
EventHandler, and GUIEventHandler. Client and EventHandler are shown as abstract 
classes, whereas GUIEventHandler is concrete. EventHandler has the usual operation 
expected of this pattern (handleRequest), although two private attributes have been added for 
this instantiation. 



Figure 8-4 Forward Engineering 

 
All of these classes specify a mapping to Java, as noted in their tagged value. Forward 
engineering the classes in this diagram to Java is straightforward, using a tool. Forward 
engineering the class EventHandler yields the following code. 
       
         public abstract class EventHandler { 
 
           EventHandler successor; 
           private Integer currentEventID; 
           private String source; 
 
           EventHandler() {} 
           public void handleRequest() {} 
 
         } 

Reverse engineering is the process of transforming code into a model through a mapping from a 
specific implementation language. Reverse engineering results in a flood of information, some of 
which is at a lower level of detail than you'll need to build useful models. At the same time, 
reverse engineering is incomplete. There is a loss of information when forward engineering 
models into code, and so you can't completely recreate a model from code unless your tools 
encode information in the source comments that goes beyond the semantics of the 
implementation language. 

Figure 3-3 was created by reverse engineering part of theJava class library. 

To reverse engineer a class diagram, 

• Identify the rules for mapping from your implementation language or languages of choice. 
This is something you'll want to do for your project or your organization as a whole. 

• Using a tool, point to the code you'd like to reverse engineer. Use your tool to generate a 
new model or modify an existing one that was previously forward engineered. 



• Using your tool, create a class diagram by querying the model. For example, you might 
start with one or more classes, then expand the diagram by following specific 
relationships or other neighboring classes. Expose or hide details of the contents of this 
class diagram as necessary to communicate your intent. 

Hints and Tips 
When you create class diagrams in the UML, remember that every class diagram is just a 
graphical presentation of the static design view of a system. No single class diagram need 
capture everything about a system's design view. Collectively, all the class diagrams of a system 
represent the system's complete static design view; individually, each represents just one aspect. 

A well-structured class diagram 

• Is focused on communicating one aspect of a system's static design view. 

• Contains only elements that are essential to understanding that aspect. 

• Provides detail consistent with its level of abstraction, with only those adornments that 
are essential to understanding. 

• Is not so minimalist that it misinforms the reader about important semantics. 

When you draw a class diagram, 

• Give it a name that communicates its purpose. 

• Lay out its elements to minimize lines that cross. 

• Organize its elements spatially so that things that are semantically close are laid out 
physically close. 

• Use notes and color as visual cues to draw attention to important features of your 
diagram. 

• Try not to show too many kinds of relationships. In general, one kind of relationship will 
tend to dominate each class diagram. 

Part III: Advanced Structural Modeling 



 

 

Chapter 9. Advanced Classes 
In this chapter 

• Classifiers, special properties of attributes and operations, and different kinds of classes 

• Modeling the semantics of a class 

• Choosing the right kind of classifier 

Classes are indeed the most important building block of any object-oriented system. However, 
classes are just one kind of an even more general building block in the UML• classifiers. A 
classifier is a mechanism that describes structural and behavioral features. Classifiers include 
classes, interfaces, datatypes, signals, components, nodes, use cases, and subsystems. 

The basic properties of classes are discussed in Chapter 4. 

Classifiers (and especially classes) have a number of advanced features beyond the simpler 
properties of attributes and operations described in the previous section: You can model 
multiplicity, visibility, signatures, polymorphism, and other characteristics. In the UML, you can 
model the semantics of a class so that you can state its meaning to whatever degree of formality 
you like. 

In the UML, there are several kinds of classifiers and classes; it's important that you choose the 
one that best models your abstraction of the real world. 

Getting Started 
Architecture is discussed in Chapter 2. 



When you build a house, at some point in the project you'll make an architectural decision about 
your building materials. Early on, it's sufficient to simply state wood, stone, or steel. That's a level 
of detail sufficient for you to move forward. The material you choose will be affected by the 
requirements of your project• steel and concrete would be a good choice if you are building in an 
area susceptible to hurricanes, for example. As you move forward, the material you choose will 
affect your design decisions that follow• choosing wood versus steel will affect the mass that can 
be supported, for example. 

As your project continues, you'll have to refine these basic design decisions and add more detail 
sufficient for a structural engineer to validate the safety of the design and for a builder to proceed 
with construction. For example, you might have to specify not just wood, but wood of a certain 
grade that's been treated for resistance to insects. 

Responsibilities are discussed in Chapter 6. 

It's the same when you build software. Early in a project, it's sufficient to say that you'll include a 
Customer class that carries out certain responsibilities. As you refine your architecture and move 
to construction, you'll have to decide on a structure for the class (its attributes) and a behavior (its 
operations) that are sufficient and necessary to carry out those responsibilities. Finally, as you 
evolve to the executable system, you'll need to model details, such as the visibility of individual 
attributes and operations, the concurrency semantics of the class as a whole and its individual 
operations, and the interfaces the class realizes. 

Forward and reverse engineering is discussed in Chapters 8, 14, 17, 18, 19, 24, 29, and 30. 

The UML provides a representation for a number of advanced properties, as Figure 9-1 shows. 
This notation permits you to visualize, specify, construct, and document a class to any level of 
detail you wish, even sufficient to support forward and reverse engineering of models and code. 

Figure 9-1 Advanced Classes 

 

Terms and Concepts 
A classifier is a mechanism that describes structural and behavioral features. Classifiers include 
classes, interfaces, datatypes, signals, components, nodes, use cases, and subsystems. 

Classifiers 

Modeling the vocabulary of a system is discussed in Chapter 4; the class/object dichotomy is 
discussed in Chapter 2. 

When you model, you'll discover abstractions that represent things in the real world and things in 
your solution. For example, if you are building a Web-based ordering system, the vocabulary of 
your project will likely include a Customer class (representing people who order products) and a 



Transaction class (an implementation artifact, representing an atomic action). In the deployed 
system, you might have a Pricing component, with instances living on every client node. Each 
of these abstractions will have instances; separating the essence and the instance of the things in 
your world is an important part of modeling. 

Instances are discussed in Chapter 13; packages are discussed in Chapter 12; generalization 
is discussed in Chapters 5 and 10; associations are discussed in Chapters 5 and 10; 
messages are discussed in Chapter 15; interfaces are discussed in Chapter 11; datatypes are 
discussed in Chapters 4 and 11; signals are discussed in Chapter 20; components are 
discussed in Chapter 25; nodes are discussed in Chapter 26; use cases are discussed in 
Chapter 16; subsystems are discussed in Chapter 31. 

Some things in the UML don't have instances• for example, packages and generalization 
relationships. In general, those modeling elements that can have instances are called classifiers 
(associations and messages can have instances as well, but their instances are not quite the 
same as the instances of a class). Even more important, a classifier has structural features (in the 
form of attributes), as well as behavioral features (in the form of operations). Every instance of a 
given classifier shares the same features. 

The most important kind of classifier in the UML is the class. A class is a description of a set of 
objects that share the same attributes, operations, relationships, and semantics. Classes are not 
the only kind of classifier, however. The UML provides a number of other kinds of classifiers to 
help you model. 

� Interface  A collection of operations that are used to specify a service of a class or a 
component 

� Datatype  A type whose values have no identity, including primitive built-in types (such as 
numbers and strings), as well as enumeration types (such as Boolean) 

� Signal  The specification of an asynchronous stimulus communicated between instances 
� 
Component  

A physical and replaceable part of a system that conforms to and provides the 
realization of a set of interfaces 

� Node  A physical element that exists at run time and that represents a computational 
resource, generally having at least some memory and often processing capability 

� Use case  A description of a set of a sequence of actions, including variants, that a system 
performs that yields an observable result of value to a particular actor 

� 
Subsystem  

A grouping of elements of which some constitute a specification of the behavior 
offered by the other contained elements 

For the most part, every kind of classifier has both structural and behavioral features (interfaces 
are the one exception; they may not have attributes). Furthermore, when you model with any of 
these classifiers, you may use all the advanced features described in this chapter to provide the 
level of detail you need to capture the meaning of the abstraction. 

Graphically, the UML distinguishes among these different classifiers, as Figure 9-2 shows. 

Figure 9-2 Classifiers 



 
Note 

A minimalist approach would have used one icon for all classifiers. That doesn't make 
sense because, for example, classes and components are very different abstractions 
(one is logical, the other physical), so having a distinctive visual cue was deemed 
important. Similarly, a maximal approach would have used different icons for each kind 
of classifier. That doesn't make sense either because, for example, classes and 
datatypes aren't that different. The design of the UML strikes a balance• those 
classifiers that are materially different from others have their own icon, and those that 
are not materially different use special keywords (such as type, signal, and 
subsystem). 

 

Visibility 

One of the most important details you can specify for a classifier's attributes and operations is its 
visibility. The visibility of a feature specifies whether it can be used by other classifiers. In the 
UML, you can specify any of three levels of visibility. 

A classifier can see another classifier if it is in scope and if there is an explicit or implicit 
relationship to the target; relationships are discussed in Chapters 5 and 10; descendants come 
from generalization relationships, as discussed in Chapter 5; friendship allows a classifier to 
expose its private parts, as discussed in Chapter 10. 

1. public  Any outside classifier with visibility to the given classifier can use the feature; 
specified by prepending the symbol +  

2. 
protected  

Any descendant of the classifier can use the feature; specified by prepending 
the symbol #  

3. private  Only the classifier itself can use the feature; specified by prepending the symbol 
 



-  

Figure 9-3 shows a mix of public, protected, and private figures for the class Toolbar. 

Figure 9-3 Visibility 

 
When you specify the visibility of a classifier's features, you generally want to hide all its 
implementation details and expose only those features that are necessary to carry out the 
responsibilities of the abstraction. That's the very basis of information hiding, which is essential to 
building solid, resilient systems. If you don't explicitly adorn a feature with a visibility symbol, you 
can usually assume that it is public. 

Note 

The UML's visibility property matches the semantics common among most 
programming languages, including C++, Java, Ada, and Eiffel. 

 

Scope 

Instances are discussed in Chapter 13. 

Another important detail you can specify for a classifier's attributes and operations is its owner 
scope. The owner scope of a feature specifies whether the feature appears in each instance of 
the classifier or whether there is just a single instance of the feature for all instances of the 
classifier. In the UML, you can specify two kinds of owner scope. 

1. instance  Each instance of the classifier holds its own value for the feature. 
2. classifier  There is just one value of the feature for all instances of the classifier. 

As Figure 9-4 (a simplification of the first figure) shows, a feature that is classifier scoped is 
rendered by underlining the feature's name. No adornment means that the feature is instance 
scoped. 

Figure 9-4 Owner Scope 



 
In general, most features of the classifiers you model will be instance scoped. The most common 
use of classifier scoped features is for private attributes that must be shared among a set of 
instances (and with the guarantee that no other instances have access to that attribute), such as 
for generating unique IDs among all instances of a given classifier, and for operations that create 
instances of the class. 

Note 

Classifier scoped maps to what C++ calls static attributes and operations. 

 

Abstract, Root, Leaf, and Polymorphic Elements 

Generalization is discussed in Chapters 5 and 10; instances are discussed in Chapter 13. 

You use generalization relationships to model a lattice of classes, with more-generalized 
abstractions at the top of the hierarchy and more-specific ones at the bottom. Within these 
hierarchies, it's common to specify that certain classes are abstract• meaning that they may not 
have any direct instances. In the UML, you specify that a class is abstract by writing its name in 
italics. For example, as Figure 9-5 shows, Icon, RectangularIcon, and ArbitraryIcon 
are all abstract classes. By contrast, a concrete class (such as Button and OKButton) is one 
that may have direct instances. 

Figure 9-5 Abstract and Concrete Classes and Operations 



 
Whenever you use a class, you'll probably want to inherit features from other, more-general, 
classes, and have other, more-specific, classes inherit features from it. These are the normal 
semantics you get from classes in the UML. However, you can also specify that a class may have 
no children. Such an element is called a leaf class and is specified in the UML by writing the 
property leaf below the class's name. For example, in the figure, OKButton is a leaf class, so it 
may have no children. 

Less common but still useful is the ability to specify that a class may have no parents. Such an 
element is called a root class, and is specified in the UML by writing the property root below the 
class's name. For example, in the figure, Icon is a root class. Especially when you have multiple, 
independent inheri-tance lattices, it's useful to designate the head of each hierarchy in this 
manner. 

Messages are discussed in Chapter 15. 

Operations have similar properties. Typically, an operation is polymorphic, which means that, in a 
hierarchy of classes, you can specify operations with the same signature at different points in the 
hierarchy. Ones in the child classes override the behavior of ones in the parent classes. When a 
message is dispatched at run time, the operation in the hierarchy that is invoked is chosen 
polymorphically• that is, a match is determined at run time according to the type of the object. 
For example, display and isInside are both polymorphic operations. Furthermore, the 
operation Icon::display() is abstract, meaning that it is incomplete and requires a child to 
supply an implementation of the operation. In the UML, you specify an abstract operation by 
writing its name in italics, just as you do for a class. By contrast, Icon::getID() is a leaf 
operation, so designated by the property leaf. This means that the operation is not polymorphic 
and may not be overridden. 



Note 

Abstract operations map to what C++ calls pure virtual operations; leaf operations in 
the UML map to C++ nonvirtual operations. 

 

Multiplicity 

Instances are discussed in Chapter 13. 

Whenever you use a class, it's reasonable to assume that there may be any number of instances 
of that class (unless, of course, it is an abstract class and so it may not have any direct instances, 
although there may be any number of instances of its concrete children). Sometimes, though, 
you'll want to restrict the number of instances a class may have. Most often, you'll want to specify 
zero instances (in which case, the class is a utility class that exposes only class scoped attributes 
and operations), one instance (a singleton class), a specific number of instances, or many 
instances (the default case). 

Multiplicity applies to associations, as well, as discussed in Chapters 5 and 10. 

The number of instances a class may have is called its multiplicity. Multiplicity is a specification of 
the range of allowable cardinalities an entity may assume. In the UML, you can specify the 
multiplicity of a class by writing a multiplicity expression in the upper-right corner of the class icon. 
For example, in Figure 9-6, NetworkController is a singleton class. Similarly, there are 
exactly three instances of the class ControlRod in the system. 

Figure 9-6 Multiplicity 

 
Attributes are related to the semantics of association, as discussed in Chapter 10. 

Multiplicity applies to attributes, as well. You can specify the multiplicity of an attribute by writing a 
suitable expression in brackets just after the attribute name. For example, in the figure, there are 
two or more consolePort instances in the instance of NetworkController. 

Attributes 

At the most abstract level, when you model a class's structural features (that is, its attributes), you 
simply write each attribute's name. That's usually enough information for the average reader to 



understand the intent of your model. As the previous sections have described, however, you can 
also specify the visibility, scope, and multiplicity of each attribute. There's still more. You can also 
specify the type, initial value, and changeability of each attribute. 

You can also use stereotypes to designate sets of related attributes, such as housekeeping 
attributes, as discussed in Chapter 6. 

In its full form, the syntax of an attribute in the UML is 
       
           [visibility] name [multiplicity] [: type] 
             [= initial-value] [{property-string}] 

For example, the following are all legal attribute declarations: 

� origin  Name only 
� + origin  Visibility and name 
� origin : Point  Name and type 
� head : *Item  Name and complex type 
� name [0..1] : String  Name, multiplicity, and type 
� origin : Point = (0,0)  Name, type, and initial value 
� id : Integer {frozen}  Name and property 

There are three defined properties that you can use with attributes. 

1. 
changeable  

There are no restrictions on modifying the attribute's value. 

2. addOnly  For attributes with a multiplicity greater than one, additional values may be 
added, but once created, a value may not be removed or altered. 

3. frozen  The attribute's value may not be changed after the object is initialized. 

Unless otherwise specified, attributes are always changeable. You'll mainly want to use 
frozen when modeling constant or write-once attributes. 

Note 

The frozen property maps to const in C++. 

 

Operations 

Signals are discussed in Chapter 20. 

At the most abstract level, when you model a class's behavioral features (that is, its operations 
and its signals), you will simply write each operation's name. That's usually enough information 
for the average reader to understand the intent of your model. As the previous sections have 
described, however, you can also specify the visibility and scope of each operation. There's still 
more: You can also specify the parameters, return type, concurrency semantics, and other 
properties of each operation. Collectively, the name of an operation plus its parameters (including 
its return type, if any) is called the operation's signature. 

Note 



The UML distinguishes between operation and method. An operation specifies a 
service that can be requested from any object of the class to affect behavior; a method 
is an implementation of an operation. Every nonabstract operation of a class must 
have a method, which supplies an executable algorithm as a body (generally 
designated in some programming language or structured text). In an inheritance 
lattice, there may be many methods for the same operation, and polymorphism selects 
which method in the hierarchy is dispatched during run time. 

 
You can also use stereotypes to designate sets of related operations, such as helper functions, 
as discussed in Chapter 6. 

In its full form, the syntax of an operation in the UML is 
       
           [visibility] name [(parameter-list)] 
             [: return-type] [{property-string}] 

For example, the following are all legal operation declarations: 

� display  Name only 
� + display  Visibility and name 
� set(n : Name, s : String)  Name and parameters 
� getID() : Integer  Name and return type 
� restart() {guarded}  Name and property 

In an operation's signature, you may provide zero or more parameters, each of which follows the 
syntax 
       
           [direction] name : type [= default-value] 

Direction may be any of the following values: 

� in  An input parameter; may not be modified 
� out  An output parameter; may be modified to communicate information to the caller 
� inout  An input parameter; may be modified 

In addition to the leaf property described earlier, there are four defined properties that you can 
use with operations. 

1. isQuery  Execution of the operation leaves the state of the system unchanged. In other 
words, the operation is a pure function that has no side effects. 

2. 
sequential  

Callers must coordinate outside the object so that only one flow is in the object 
at a time. In the presence of multiple flows of control, the semantics and 
integrity of the object cannot be guaranteed. 

3. guarded  The semantics and integrity of the object is guaranteed in the presence of 
multiple flows of control by sequentializing all calls to all of the object's guarded 
operations. In effect, exactly one operation at a time can be invoked on the 
object, reducing this to sequential semantics. 

4. 
concurrent  

The semantics and integrity of the object is guaranteed in the presence of 
multiple flows of control by treating the operation as atomic. Multiple calls from 
concurrent flows of control may occur simultaneously to one object on any 
concurrent operation, and all may proceed concurrently with correct semantics; 



concurrent operations must be designed so that they perform correctly in the 
case of a concurrent sequential or guarded operation on the same object. 

Active object, processes, and threads are discussed in Chapter 22. 

The last three properties (sequential, guarded, concurrent) address the concurrency 
semantics of an operation, properties that are relevant only in the presence of active objects, 
processes, or threads. 

Template Classes 

A template is a parameterized element. In such languages as C++ and Ada, you can write 
template classes, each of which defines a family of classes (you can also write template 
functions, each of which defines a family of functions). A template includes slots for classes, 
objects, and values, and these slots serve as the template's parameters. You can't use a 
template directly; you have to instantiate it first. Instantiation involves binding these formal 
template parameters to actual ones. For a template class, the result is a concrete class that can 
be used just like any ordinary class. 

The most common use of template classes is to specify containers that can be instantiated for 
specific elements, making them type-safe. For example, the following C++ code fragment 
declares a parameterized Map class. 
       
           template<class Item, class Value, int Buckets> 
           class Map { 
           public: 
             virtual Boolean bind(const Item&, const Value&); 
             virtual Boolean isBound(const Item&) const; 
             ... 
           }; 

You might then instantiate this template to map Customer objects to Order objects. 
       
           m : Map<Customer, Order, 3>; 

The basic properties of classes are discussed in Chapter 4. 

You can model template classes in the UML as well. As Figure 9-7 shows, you render a 
template class just as you do an ordinary class, but with an additional dashed box in the upper-
right corner of the class icon, which lists the template parameters. 

Figure 9-7 Template Classes 



 
Dependencies are discussed in Chapters 5 and 10; stereotypes are discussed in Chapter 6. 

As the figure goes on to show, you can model the instantiation of a template class in two ways. 
First, you can do so implicitly, by declaring a class whose name provides the binding. Second, 
you can do so explicitly, by using a dependency stereotyped as bind, which specifies that the 
source instantiates the target template using the actual parameters. 

Standard Elements 

The UML's extensibility mechanisms are discussed in Chapter 6; interface, type, and 
implementationClass are discussed in Chapter 11; actors are discussed in Chapter 16; signals 
are discussed in Chapter 20. 

All of the UML's extensibility mechanisms apply to classes. Most often, you'll use tagged values 
to extend class properties (such as specifying the version of a class) and stereotypes to specify 
new kinds of components (such as model- specific components). 

The UML defines four standard stereotypes that apply to classes. 

1. metaclass  Specifies a classifier whose objects are all classes 
2. powertype  Specifies a classifier whose objects are the children of a given parent 
3. 
stereotype  

Specifies that the classifier is a stereotype that may be applied to other 
elements 

4. utility  Specifies a class whose attributes and operations are all class scoped 

Note 

A number of other standard stereotypes or keywords that apply to classes are 
discussed elsewhere: interface, type, implementationClass, actor, 
exception, signal, process, and thread. 

Common Modeling Techniques 
Modeling the Semantics of a Class 

The common uses of classes are discussed in Chapter 4. 



The most common purpose for which you'll use classes is to model abstractions that are drawn 
from the problem you are trying to solve or from the technology you are using to implement a 
solution to that problem. Once you've identified those abstractions, the next thing you'll need to 
do is specify their semantics. 

Modeling is discussed in Chapter 1; you can also model the semantics of an operation using an 
activity diagram, as discussed in Chapter 19. 

In the UML, you have a wide spectrum of modeling possibilities at your disposal, ranging from the 
very informal (responsibilities) to the very formal (OCL, or Object Constraint Language). Given 
these choices, you must decide the level of detail that is appropriate to communicate the intent of 
your model. If the purpose of your model is to communicate with end users and domain experts, 
you'll tend to lean toward the less formal. If the purpose of your model is to support round-trip 
engineering, which flows between models and code, you'll tend to lean toward the more formal. If 
the purpose of your model is to rigorously and mathematically reason about your models and 
prove their correctness, you'll lean toward the very formal. 

Note 

Less formal does not mean less accurate. It means less complete and less detailed. 
Pragmatically, you'll want to strike a balance between informal and very formal. This 
means providing enough detail to support the creation of executable artifacts, but still 
hiding those details so that you do not overwhelm the reader of your models. 

 
To model the semantics of a class, choose among the following possibilities, arranged from 
informal to formal. 

Responsibilities are discussed in Chapter 4. 

• Specify the responsibilities of the class. A responsibility is a contract or obligation of a 
type or class and is rendered in a note (stereotyped as responsibility) attached to 
the class, or in an extra compartment in the class icon. 

• Specify the semantics of the class as a whole using structured text, rendered in a note 
(stereotyped as semantics) attached to the class. 

• Specify the body of each method using structured text or a programming language, 
rendered in a note attached to the operation by a dependency relationship. 

• Specify the pre- and postconditions of each operation, plus the invariants of the class as 
a whole, using structured text. These elements are rendered in notes (stereotyped as 
precondition, postcondition, and invariant) attached to the operation or class 
by a dependency relationship. 

• Specify a state machine for the class. A state machine is a behavior that specifies the 
sequences of states an object goes through during its lifetime in response to events, 
together with its responses to those events. 

• Specify a collaboration that represents the class. A collaboration is a society of roles and 
other elements that work together to provide some cooperative behavior that's bigger 
than the sum of all the elements. A collaboration has a structural part, as well as a 
dynamic part, so you can use collaborations to specify all dimensions of a class's 
semantics. 



• Specify the pre- and postconditions of each operation, plus the invariants of the class as 
a whole, using a formal language such as OCL. 

Specifying the body of a method is discussed in Chapter 3; specifying the semantics of an 
operation is discussed in Chapter 19; state machines are discussed in Chapter 21; 
collaborations are discussed in Chapter 27. 

OCL is discussed in The Unified Modeling Language Reference Manual. 

Pragmatically, you'll end up doing some combination of these approaches for the different 
abstractions in your system. 

Note 

When you specify the semantics of a class, keep in mind whether your intent is to 
specify what the class does or how it does it. Specifying the semantics of what a class 
does represents its public, outside view; specifying the semantics of how a class does 
it represents its private, inside view. You'll want to use a mixture of these two views, 
emphasizing the outside view for clients of the class and emphasizing the inside view 
for those who implement the class. 

Hints and Tips 
When you model classifiers in the UML, remember that there is a wide range of building blocks at 
your disposal, from interfaces to classes to components, and so on. You must choose the one 
that best fits your abstraction. A well-structured classifier 

• Has both structural and behavioral aspects. 

• Is tightly cohesive and loosely coupled. 

• Exposes only those features necessary for clients to use the class, and hides all others. 

• Is unambiguous in its intent and semantics. 

• Is not so overly specified that it eliminates all degrees of freedom for its implementers. 

• Is not so underspecified that it renders the meaning of the classifier ambiguous. 

When you draw a classifier in the UML, 

• Show only those properties of the classifier that are important to understand the 
abstraction in its context. 

• Chose a stereotyped version that provides the best visual cue to the intent of the 
classifier. 

Chapter 10. Advanced Relationships 
In this chapter 

• Advanced dependency, generalization, association, realization, and refinement 
relationships 

• Modeling webs of relationships 

• Creating webs of relationships 



When you model the things that form the vocabulary of your system, you must also model how 
those things stand in relationship to one another. Relationships can be complex, however. 
Visualizing, specifying, constructing, and documenting webs of relationships require a number of 
advanced features. 

The basic properties of relationships are discussed in Chapter 5; interfaces are discussed in 
Chapter 11; components are discussed in Chapter 25; use cases are discussed in Chapter 
16; collaborations are discussed in Chapter 27. 

Dependencies, generalizations, and associations are the three most important relational building 
blocks of the UML. These relationships have a number of properties beyond those described in 
the previous section. You can also model multiple inheritance, navigation, composition, 
refinement, and other characteristics. Using a fourth kind of relationship• realization• you can 
model the connection between an interface and a class or component, or between a use case 
and a collaboration. In the UML, you can model the semantics of relationships to any degree of 
formality. 

Managing complex webs of relationships requires that you use the right relationships at the level 
of detail so that you neither under- nor over-engineer your system. 

Getting Started 
Use cases andscenarios are discussed in Chapter 16. 

If you are building a house, deciding where to place each room in relation to others is a critical 
task. At one level of abstraction, you might decide to put the master bedroom on the main level, 
away from the front of the house. You might next think through common scenarios to help you 
reason about the use of this room arrangement. For example, consider bringing in groceries from 
the garage. It wouldn't make sense to walk from the garage through your bedroom to get to the 
kitchen, so that's an arrangement you'd reject. 

You can form a fairly complete picture of your house's floor plan just by thinking through these 
basic relationships and use cases. However, that's not enough. You can end up with some real 
flaws in your design if you don't consider more-complex relationships. 

For example, you might like the arrangement of rooms on each floor, but rooms on different floors 
might interact in unforeseen ways. Suppose you place your teenager daughter's room right above 
your bedroom. Now, suppose your teenager decides to learn how to play the drums. You'd clearly 
want to reject that floor plan, too. 

Similarly, you have to consider how underlying mechanisms in the house might interact with your 
floor plan. For example, you'll increase the cost of construction if you don't arrange your rooms so 
that you have common walls in which to run pipes and drains. 

Forward andreverse engineering are discussed in Chapters 8, 14, 17, 18, 19, 24, 29, and 30. 

It's the same when you build software. Dependencies, generalizations, and associations are the 
most common relationships you'll encounter when modeling software-intensive systems. 
However, you need a number of advanced features of these relationships in order to capture the 
details of many systems•  details that are important for you to consider so that you avoid real 
flaws in your design. 

The UML provides a representation for a number of advanced properties, as Figure 10-1 shows. 
This notation permits you to visualize, specify, construct, and document webs of relationships to 
any level of detail you wish, even sufficient to support forward and reverse engineering of models 
and code. 



Figure 10-1 Advanced Relationships 

 

Terms and Concepts 
A relationship is a connection among things. In object-oriented modeling, the four most important 
relationships are dependencies, generalizations, associattions, and realizations. Graphically, a 
relationship is rendered as a path, with different kinds of lines used to distinguish the different 
relationships. 

Dependency 

The basic properties of dependencies are discussed in Chapter 5. 

A dependency is a using relationship, specifying that a change in the specification of one thing 
(for example, class SetTopController) may affect another thing that uses it (for example, 
class ChannelIterator), but not necessarily the reverse. Graphically, a dependency is 
rendered as a dashed line, directed to the thing that is depended on. Apply dependencies when 
you want to show one thing using another. 

The UML's extensibility mechanisms are discussed in Chapter 6. 

A plain, unadorned dependency relationship is sufficient for most of the using relationships you'll 
encounter. However, if you want to specify a shade of meaning, the UML defines a number of 
stereotypes that may be applied to dependency relationships. There are 17 such stereotypes, all 
of which can be organized into six groups. 

Class diagrams are discussed in Chapter 8. 

First, there are eight stereotypes that apply to dependency relationships among classes and 
objects in class diagrams. 

1. 
bind  

Specifies that the source instantiates the target template using the given actual 
parameters 

Templates and bind dependencies are discussed in Chapter 9. 

You'll use bind when you want to model the details of template classes. For example, the 
relationship between a template container class and an instantiation of that class would be 
modeled as a bind dependency. Bind includes a list of actual arguments that map to the formal 
arguments of the template. 



2. derive  Specifies that the source may be computed from the target 

Attributes are discussed in Chapters 4 and 9; associations are discussed in Chapter 5 and 
later in this chapter. 

You'll use derive when you want to model the relationship between two attributes or two 
associations, one of which is concrete and the other is conceptual. For example, a Person class 
might have the attribute BirthDate (which is concrete), as well as the attribute Age (which can 
be derived from BirthDate, so is not separately manifest in the class). You'd show the 
relationship between Age and BirthDate by using a derive dependency, showing Age derived 
from BirthDate. 

3. friend  Specifies that the source is given special visibility into the target 

Friend dependencies are discussed in Chapter 5. 

You'll use friend when you want to model relationships such as found with C++ friend classes. 

4. instanceOf  Specifies that the source object is an instance of the target classifier 
5. instantiate  Specifies that the source creates instances of the target 

The class/object dichotomy is discussed in Chapter 2. 

These last two stereotypes let you model class/object relationships explicitly. You'll use 
instanceOf when you want to model the relationship between a class and an object in the 
same diagram, or between a class and its metaclass. You'll use instantiate when you want to 
specify which element creates objects of another. 

6. 
powertype  

Specifies that the target is a powertype of the source; a powertype is a classifier 
whose objects are all the children of a given parent 

Modeling logical databases is discussed in Chapter 8; modeling physical databases is 
discussed in Chapter 29. 

You'll use powertype when you want to model classes that cover other classes, such as you'll 
find when modeling databases. 

7. refine  Specifies that the source is at a finer degree of abstraction than the target 

You'll use refine when you want to model classes that are essentially the same but at different 
levels of abstraction. For example, during analysis, you might encounter a Customer class 
which, during design, you refine into a more detailed Customer class, complete with its 
implementation. 

8. 
use  

Specifies that the semantics of the source element depends on the semantics of the 
public part of the target 

You'll apply use when you want to explicitly mark a dependency as a using relationship, in 
contrast to the shades of dependencies other stereotypes provide. 

Packages are discussed in Chapter 12. 

Continuing, there are two stereotypes that apply to dependency relationships among packages. 

1. 
access  

Specifies that the source package is granted the right to reference the elements of the 
target package 

2. A kind of access that specifies that the public contents of the target package enter the 



import  flat namespace of the source, as if they had been declared in the source  

You'll use access and import when you want to model the relationships among packages. 
Between two peer packages, the elements in one cannot reference the elements in the other 
unless there's an explicit access or import dependency. For example, suppose a target 
package T contains the class C. If you specify an access dependency from Sto T, then the 
elements of S can reference C, using the fully qualified name T::C. If you specify an import 
dependency from S to T, then the elements of S can reference C using just its simple name. 

Use cases are discussed in Chapter 16. 

Two stereotypes apply to dependency relationships among use cases: 

1. extend  Specifies that the target use case extends the behavior of the source 
2. 
include  

Specifies that the source use case explicitly incorporates the behavior of another 
use case at a location specified by the source 

You'll use extend and include (and simple generalization) when you want to decompose use 
cases into reusable parts. 

Interactions are discussed in Chapter 15. 

You'll encounter three stereotypes when modeling interactions among objects. 

1. 
become  

Specifies that the target is the same object as the source but at a later point in time 
and with possibly different values, state, or roles 

2. call  Specifies that the source operation invokes the target operation 
3. copy  Specifies that the target object is an exact, but independent, copy of the source 

Time andspace are discussed in Chapter 23. 

You'll use become and copy when you want to show the role, state, or attribute value of one 
object at different points in time or space. You'll use call when you want to model the calling 
dependencies among operations. 

One stereotype you'll encounter in the context of state machines is 

?send  Specifies that the source operation sends the target event 

State machines are discussed in Chapter 21. 

You'll use send when you want to model an operation (such as found in the action associated 
with a state transition) dispatching a given event to a target object (which in turn might have an 
associated state machine). The send dependency in effect lets you tie independent state 
machines together. 

Systems andmodels are discussed in Chapter 31. 

Finally, one stereotype that you'll encounter in the context of organizing the elements of your 
system into subsystems and models is 

?trace  Specifies that the target is an historical ancestor of the source 

The five views of an architecture are discussed in Chapter 2. 

You'll use trace when you want to model the relationships among elements in different models. 
For example, in the context of a system's architecture, a use case in a use case model 



(representing a functional requirement) might trace to a package in the corresponding design 
model (representing the artifacts that realize that use case). 

Note 

Semantically, all relationships, including generalization, association, and realization, 
are kinds of dependencies. Generalization, association, and realization have enough 
important semantics about them that they warrant treatment as distinct kinds of 
relationships in the UML. The stereotypes listed above represent shades of 
dependencies, each of which has its own semantics, but each of which is not so 
semantically distant from plain dependencies to warrant treatment as distinct kinds of 
relationships. This is a judgment call on the part of the UML, but experience shows 
that this approach strikes a balance between highlighting the important kinds of 
relationships you'll encounter and not overwhelming the modeler with too many 
choices. You won't go wrong if you model generalization, association, and realization 
first, then view all other relationships as kinds of dependencies. 

 

Generalization 

The basic properties of generalizations are discussed in Chapter 5. 

A generalization is a relationship between a general thing (called the superclass or parent) and a 
more specific kind of that thing (called the subclass or child). For example, you might encounter 
the general class Window with its more specific kind, MultiPaneWindow. With a generalization 
relationship from the child to the parent, the child (MultiPaneWindow) will inherit all the 
structure and behavior of the parent (Window). The child may even add new structure and 
behavior, or it may modify the behavior of the parent. In a generalization relationship, instances of 
the child may be used anywhere instances of the parent apply• meaning that the child is 
substitutable for the parent. 

Most of the time, you'll find single inheritance sufficient. A class that has exactly one parent is 
said to use single inheritance. There are times, however, when multiple inheritance is better, and 
you can model those relationships, as well, in the UML. For example, Figure 10-2 shows a set 
of classes drawn from a financial services application. You see the class Asset with three 
children: BankAccount, RealEstate, and Security. Two of these children (BankAccount 
and Security) have their own children. For example, Stock and Bond are both children of 
Security. 

Figure 10-2 Multiple Inheritance 



 
Two of these children (BankAccount and RealEstate) inherit from multiple parents. 
RealEstate, for example, is a kind of Asset, as well as a kind of InsurableItem, and 
BankAccount is a kind of Asset, as well as a kind of InterestBearingItem and an 
InsurableItem. 

Parents, such as InterestBearingItem and InsurableItem, are called mixins because 
they don't stand alone but, rather, are intended to be mixed in with other parents (such as Asset) 
to form children from these various bits of structure and behavior. 

Note 

Use multiple inheritance carefully. You'll run into problems if a child has multiple 
parents whose structure or behavior overlap. In fact, in most cases, multiple 
inheritance can be replaced by delegation, in which a child inherits from only one 
parent and then uses aggregation to obtain the structure and behavior of more 
subordinate parents. The main downside with this approach is that you lose the 
semantics of substitutability with these subordinate parents. 

 

The UML's extensibility mechanisms are discussed in Chapter 6; the UML's defined stereotypes 
and constraints are discussed in Appendix B. 

A plain, unadorned generalization relationship is sufficient for most of the inheritance 
relationships you'll encounter. However, if you want to specify a shade of meaning, the UML 
defines one stereotype and four constraints that may be applied to generalization relationships. 

First, there is the one stereotype. 

?implementation Specifies that the child inherits the implementation of the parent but does 
not make public nor support its interfaces, thereby violating 
substitutability 

You'll use implementation when you want to model private inheritance, such as found in C++. 

Next, there are four standard constraints that apply to generalization relationships. 

1. complete  Specifies that all children in the generalization have been specified in the model 
(although some may be elided in the diagram) and that no additional children 
are permitted 



2. 
incomplete  

Specifies that not all children in the generalization have been specified (even if 
some are elided) and that additional children are permitted 

The general properties of diagrams are discussed in Chapter 7. 

Unless otherwise stated, you can assume that any diagram shows only a partial view of an 
inheritance lattice and so is elided. However, elision is different from the completeness of a 
model. Specifically, you'll use the complete constraint when you want to show explicitly that 
you've fully specified a hierarchy in the model (although no one diagram may show that 
hierarchy); you'll use incomplete to show explicitly that you have not stated the full specification 
of the hierarchy in the model (although one diagram may show everything in the model). 

3. disjoint  Specifies that objects of the parent may have no more than one of the 
children as a type 

4. 
overlapping  

Specifies that objects of the parent may have more than one of the children 
as a type 

Types and interfaces are discussed in Chapter 11; interactions are discussed in Chapter 15. 

These two constraints apply only in the context of multiple inheritance. You'll use disjoint and 
overlapping when you want to distinguish between static classification (disjoint) and 
dynamic classification (overlapping). 

Note 

In most cases, an object has one type at run time; that's a case of static classification. 
If an object can change its type during run time, that's a case of dynamic classification. 
Modeling dynamic classification is complex. But in the UML, you can use a 
combination of multiple inheritance (to show the potential types of an object) and types 
and interactions (to show the changing type of an object during run time). 

 

Association 

The basic properties of associations are discussed in Chapter 5. 

An association is a structural relationship, specifying that objects of one thing are connected to 
objects of another. For example, a Library class might have a one-to-many association to a 
Book class, indicating that each Book instance is owned by one Library instance. Furthermore, 
given a Book, you can find its owning Library, and given a Library, you can navigate to all 
its Books. Graphically, an association is rendered as a solid line connecting the same or different 
classes. You use associations when you want to show structural relationships. 

There are four basic adornments that apply to an association: a name, the role at each end of the 
association, the multiplicity at each end of the association, and aggregation. For advanced uses, 
there are a number of other properties you can use to model subtle details, such as navigation, 
qualification, and various flavors of aggregation. 

Navigation   

Given a plain, unadorned association between two classes, such as Book and Library, it's 
possible to navigate from objects of one kind to objects of the other kind. Unless otherwise 
specified, navigation across an association is bidirectional. However, there are some 
circumstances in which you'll want to limit navigation to just one direction. For example, as 



Figure 10-3 shows, when modeling the services of an operating system, you'll find an 
association between User and Password objects. Given a User, you'll want to be able to find 
the corresponding Password objects; but given a Password, you don't want to be able to 
identify the corresponding User. You can explicitly represent the direction of navigation by 
adorning an association with an arrowhead pointing to the direction of traversal. 

Figure 10-3 Navigation 

 
Note 

Specifying a direction of traversal does not necessarily mean that you can't ever get 
from objects at one end of an association to objects at the other end. Rather, 
navigation is a statement of efficiency of traversal. For example, in the previous figure, 
it might still be possible to find the User objects associated with a Password through 
other associations that involve yet other classes not shown. Specifying that an 
association is navigable is a statement that, given an object at one end, you can easily 
and directly get to objects at the other end, usually because the source object stores 
some references to objects of the target. 

 

Public, protected, and private visibility is discussed in Chapter 9. 

Visibility   

Given an association between two classes, objects of one class can see and navigate to objects 
of the other, unless otherwise restricted by an explicit statement of navigation. However, there are 
circumstances in which you'll want to limit the visibility across that association relative to objects 
outside the association. For example, as Figure 10-4 shows, there is an association between 
UserGroup and User and another between User and Password. Given a User object, it's 
possible to identify its corresponding Password objects. However, a Password is private to a 
User, so it shouldn't be accessible from the outside (unless, of course, the User explicitly 
exposes access to the Password, perhaps through some public operation). Therefore, as the 
figure shows, given a UserGroup object, you can navigate to its User objects (and vice versa), 
but you cannot in turn see the User object's Password objects; they are private to the User. In 
the UML, you can specify three levels of visibility for an association end, just as you can for a 
class's features by appending a visibility symbol to a role name. Unless otherwise noted, the 
visibility of a role is public. Private visibility indicates that objects at that end are not accessible to 
any objects outside the association; protected visibility indicates that objects at that end are not 
accessible to any objects outside the association, except for children of the other end. 



Figure 10-4 Visibility 

 
Attributes are discussed in Chapters 4 and 9. 

Qualification   

In the context of an association, one of the most common modeling idioms you'll encounter is the 
problem of lookup. Given an object at one end of an association, how do you identify an object or 
set of objects at the other end? For example, consider the problem of modeling a work desk at a 
manufacturing site at which returned items are processed to be fixed. As Figure 10-5 shows, 
you'd model an association between two classes, WorkDesk and ReturnedItem. In the context 
of the WorkDesk, you'd have a jobId that would identify a particular ReturnedItem. In that 
sense, jobId is an attribute of the association. It's not a feature of ReturnedItem because 
items really have no knowledge of things like repairs or jobs. Then, given an object of WorkDesk 
and given a particular value for jobId, you can navigate to zero or one objects of 
ReturnedItem. In the UML, you'd model this idiom using a qualifier, which is an association 
attribute whose values partition the set of objects related to an object across an association. You 
render a qualifier as a small rectangle attached to the end of an association, placing the attributes 
in the rectangle, as the figure shows. The source object, together with the values of the qualifier's 
attributes, yield a target object (if the target multiplicity is at most one) or a set of objects (if the 
target multiplicity is many). 

Figure 10-5 Qualification 

 
Note 

Qualifiers have some fairly deep semantics, and there are a number of complicated 
fringe cases in which you'll find them. However, most of the time, the circumstances 
for which you'll need qualifiers are pretty straightforward. If you can devise a lookup 
data structure at one end of an association (for example, a hash table or b-tree), then 
manifest that index as a qualifier. In most cases, the source end's multiplicity will be 
many and the target end's multiplicity will be 0..1. 

 

Roles are discussed in Chapter 4; interfaces are discussed in Chapter 11; classifiers are 
discussed in Chapter 9. 

Interface Specifier   



An interface is a collection of operations that are used to specify a service of a class or a 
component; every class may realize many interfaces. Collectively, the interfaces realized by a 
class represent a complete specification of the behavior of that class. However, in the context of 
an association with another target class, a source class may choose to present only part of its 
face to the world. For example, in the vocabulary of a human resources system, a Person class 
may realize many interfaces: IManager, IEmployee, IOfficer, and so on. As Figure 10-6 
shows, you can model the relationship between a supervisor and her workers with a one-to-many 
association, explicitly labeling the roles of this association as supervisor and worker. In the 
context of this association, a Person in the role of supervisor presents only the IManager 
face to the worker; a Person in the role of worker presents only the IEmployee face to the 
supervisor. As the figure shows, you can explicitly show the type of role using the syntax 
rolename : iname, where iname is some interface of the other classifier. 

Figure 10-6 Interface Specifiers 

 
Simpleaggregation is discussed in Chapter 5. 

Composition   

Aggregation turns out to be a simple concept with some fairly deep semantics. Simple 
aggregation is entirely conceptual and does nothing more than distinguish a "whole" from a "part." 
Simple aggregation does not change the meaning of navigation across the association between 
the whole and its parts, nor does it link the lifetimes of the whole and its parts. 

An attribute is essentially a shorthand for composition; attributes are discussed in Chapters 4 
and 9. 

However, there is a variation of simple aggregation• composition• that does add some important 
semantics. Composition is a form of aggregation, with strong ownership and coincident lifetime as 
part of the whole. Parts with non-fixed multiplicity may be created after the composite itself, but 
once created they live and die with it. Such parts can also be explicitly removed before the death 
of the composite. 

This means that, in a composite aggregation, an object may be a part of only one composite at a 
time. For example, in a windowing system, a Frame belongs to exactly one Window. This is in 
contrast to simple aggregation, in which a part may be shared by several wholes. For example, in 
the model of a house, a Wall may be a part of one or more Room objects. 

In addition, in a composite aggregation, the whole is responsible for the disposition of its parts, 
which means that the composite must manage the creation and destruction of its parts. For 
example, when you create a Frame in a windowing system, you must attach it to an enclosing 
Window. Similarly, when you destroy the Window, the Window object must in turn destroy its 
Frame parts. 



As Figure 10-7 shows, composition is really just a special kind of association and is specified by 
adorning a plain association with a filled diamond at the whole end. 

Figure 10-7 Composition 

 
Note 

Alternately, you can show composition by nesting the symbols of the parts within the 
symbol of the composite. This form is most useful when you want to emphasize the 
relationships among the parts that apply only in the context of the whole. 

 

Attributes are discussed in Chapters 4 and 9. 

Association Classes   

In an association between two classes, the association itself might have properties. For example, 
in an employer/employee relationship between a Company and a Person, there is a Job that 
represents the properties of that relationship that apply to exactly one pairing of the Person and 
Company. It wouldn't be appropriate to model this situation with a Company to Job association 
together with a Job to Person association. That wouldn't tie a specific instance of the Job to the 
specific pairing of Company and Person. 

In the UML, you'd model this as an association class, which is a modeling element that has both 
association and class properties. An association class can be seen as an association that also 
has class properties, or as a class that also has association properties. You render an association 
class as a class symbol attached by a dashed line to an association as in Figure 10-8. 

Figure 10-8 Association Classes 



 
Note 

Sometimes you'll want to have the same properties for several different association 
classes. However, you can't attach an association class to more than one association, 
since an association class is the association itself. To achieve that effect, define a 
class (C) and then have each association class that needs those features inherit from 
C or use C as the type of an attribute. 

 

The UML's extensibility mechanisms are discussed in Chapter 6; the UML's defined stereotypes 
and constraints are discussed in Appendix B. 

Constraints   

These simple and advanced properties of associations are sufficient for most of the structural 
relationships you'll encounter. However, if you want to specify a shade of meaning, the UML 
defines five constraints that may be applied to association relationships. 

First, you can distinguish if the association is real or conceptual. 

1. implicit  Specifies that the relationship is not manifest but, rather, is only conceptual 

For example, if you have an association between two base classes, you can specify that same 
association between two children of those base classes (because they inherit the relationships of 
the parent classes). You'd mark it as implicit, because it's not manifest separately but, rather, 
is implicit from the relationship that exists between the parent classes. 

Second, you can specify that the objects at one end of an association (with a multiplicity greater 
than one) are ordered or unordered. 

2. ordered Specifies that the set of objects at one end of an association are in an explicit order 

For example, in a User/Password association, the Passwords associated with the User might 
be kept in a least-recently used order, and would be marked as ordered. 



These changeability properties apply toattributes, as well, as discussed in Chapter 9; links are 
discussed in Chapter 15. 

Next, there are three properties, defined using constraint notation, that relate to the changeability 
of the instances of an association. 

Finally, there are three defined constraints that relate to the changeability of the instances of an 
association. 

3. 
changeable  

Links between objects may be added, removed, and changed freely 

4. addOnly  New links may be added from an object on the opposite end of the association 
5. frozen  A link, once added from an object on the opposite end of the association, may 

not be modified or deleted 
Finally, there is one constraint for managing related sets of associations: 

6. 
xor  

Specifies that, over a set of associations, exactly one is manfest for each associated 
object 

Realization 

A realizationis a semantic relationship between classifiers in which one classifier specifies a 
contract that another classifier guarantees to carry out. Graphically, a realization is rendered as a 
dashed directed line with a large open arrowhead pointing to the classifier that specifies the 
contract. 

Realization is sufficiently different from dependency, generalization, and association relationships 
that it is treated as a separate kind of relationship. Semantically, realization is somewhat of a 
cross between dependency and generalization, and its notation is a combination of the notation 
for dependency and generalization. You'll use realization in two circumstances: in the context of 
interfaces and in the context of collaborations. 

Interfaces are discussed in Chapter 11; classes are discussed in Chapters 4 and 9; 
components are discussed in Chapter 25; the five views of an architecture are discussed in 
Chapter 2. 

Most of the time, you'll use realization to specify the relationship between an interface and the 
class or component that provides an operation or service for it. An interface is a collection of 
operations that are used to specify a service of a class or a component. Therefore, an interface 
specifies a contract that a class or component must carry out. An interface may be realized by 
many such classes or components, and a class or component may realize many interfaces. 
Perhaps the most interesting thing about interfaces is that they let you separate the specification 
of a contract (the interface itself) from its implementation (by a class or a component). 
Furthermore, interfaces span the logical and physical parts of a system's architecture. For 
example, as Figure 10-9 shows, a class (such as AccountBusinessRules in an order entry 
system) in a system's design view might realize a given interface (such as IRuleAgent). That 
same interface (IRuleAgent) might also be realized by a component (such as acctrule.dll) 
in the system's implementation view. Note that you can represent realization in two ways: in the 
canonical form (using the interface stereotype and the dashed directed line with a large open 
arrowhead) and in an elided form (using the interface lollipop notation). 

Figure 10-9 Realization of an Interface 



 
Use cases are discussed in Chapter 16; collaborations are discussed in Chapter 27. 

You'll also use realization to specify the relationship between a use case and the collaboration 
that realizes that use case, as Figure 10-10 shows. In this circumstance, you'll almost always 
use the canonical form of realization. 

Figure 10-10 Realization of a Use Case 

 
Note 

When a class or a component realizes an interface, it means that clients can rely on 
the class or component to faithfully carry out the behavior specified by the interface. 
That means the class or component implements all the operations of the interface, 
responds to all its signals, and in all ways follows the protocol established by the 
interface for clients who use those operations or send those signals. 

Common Modeling Techniques 
Modeling Webs of Relationships 



Modeling the vocabulary of a system and modeling the distribution of responsibilities in a system 
are discussed in Chapter 4. 

When you model the vocabulary of a complex system, you may encounter dozens, if not 
hundreds or thousands, of classes, interfaces, components, nodes, and use cases. Establishing a 
crisp boundary around each of these abstractions is hard. Establishing the myriad of relationships 
among these abstractions is even harder: this requires you to form a balanced distribution of 
responsibilities in the system as a whole, with individual abstractions that are tightly cohesive and 
with relationships that are expressive, yet loosely coupled. 

When you model these webs of relationships, 

Use cases are discussed in Chapter 16. 

• Don't begin in isolation. Apply use cases and scenarios to drive your discovery of the 
relationships among a set of abstractions. 

• In general, start by modeling the structural relationships that are present. These reflect 
the static view of the system and are therefore fairly tangible. 

• Next, identify opportunities for generalization/specialization relationships; use multiple 
inheritance sparingly. 

• Only after completing the preceding steps should you look for dependencies; they 
generally represent more-subtle forms of semantic connection. 

• For each kind of relationship, start with its basic form and apply advanced features only 
as absolutely necessary to express your intent. 

• Remember that it is both undesirable and unnecessary to model all relationships among 
a set of abstractions in a single diagram or view. Rather, build up your system's 
relationships by considering different views on the system. Highlight interesting sets of 
relationships in individual diagrams. 

The five views of an architecture are discussed in Chapter 2; theRational Unified Process is 
summarized in Appendix C. 

The key to successfully modeling complex webs of relationships is to do so in an incremental 
fashion. Build up relationships as you add to the structure of a system's architecture. Simplify 
those relationships as you discover opportunities for common mechanisms. At every release in 
your development process, assess the relationships among the key abstractions in your system. 

Note 

In practice• and especially if you are following an incremental and iterative 
development process• the relationships in your models will derive from explicit 
decisions by the modeler as well as from the reverse engineering of your 
implementation. 

Hints and Tips 
When you model advanced relationships in the UML, remember that there is a wide range of 
building blocks at your disposal, from simple associations to more-detailed properties of 
navigation, qualification, aggregation, and so on. You must choose the relationship and the 
details of that relationship to best fit your abstraction. A well-structured relationship 



• Exposes only those features necessary for clients to use the relationship and hides all 
others. 

• Is unambiguous in its intent and semantics. 

• Is not so overly specified that it eliminates all degrees of freedom by its implementers. 

• Is not so underspecified, that it renders the meaning of the relationship ambiguous. 

When you draw a relationship in the UML, 

• Show only those properties of the relationship that are important to understanding the 
abstraction in its context. 

• Choose a stereotyped version that provides the best visual cue to the intent of the 
relationship. 

Chapter 11. Interfaces, Types, and Roles 
In this chapter 

• Interfaces, types, roles, and realization 

• Modeling the seams in a system 

• Modeling static and dynamic types 

• Making interfaces understandable and approachable 

Interfaces define a line between the specification of what an abstraction does and the 
implementation of how that abstraction does it. An interface is a collection of operations that are 
used to specify a service of a class or a component. 

You use interfaces to visualize, specify, construct, and document the seams within your system. 
Types and roles provide a mechanism for you to model the static and dynamic conformance of an 
abstraction to an interface in a specific context. 

A well-structured interface provides a clear separation between the outside view and the inside 
view of an abstraction, making it possible to understand and approach an abstraction without 
having to dive into the details of its implementation. 

Getting Started 
Designing houses is discussed in Chapter 1. 

It wouldn't make a lot of sense to design a house that required you to rip up the foundations every 
time you needed to repaint the walls. Similarly, you wouldn't want to live in a place that required 
you to rewire the building when-ever you needed to change a light bulb. The owner of a high rise 
wouldn't be thrilled to have to move doors or replace all electrical and phone jacks whenever a 
new tenant moved in. 

Centuries of building experience have provided lots of pragmatic construction-related information 
to help builders avoid these obvious• and some not so obvious• problems that arise when a 
building grows and changes over time. In software terms, we call this designing with a clear 
separation of concerns. For example, in a well-structured building, the skin or facade of the 
structure can be modified or replaced without disturbing the rest of the building. Similarly, the 
furnishings inside a building can easily be moved about without changing the infrastructure. 



Services that run through the walls for electrical, heating, plumbing, and waste disposal facilities 
can be changed with some degree of scrap and rework, but you still don't have to rend the fabric 
of the building to do so. 

Not only do standard building practices help you build buildings that can evolve over time, but 
there are many standard interfaces to which you can build, permitting you to use common, off-
the-shelf components, whose use ultimately helps reduce the cost of construction and 
maintenance. For example, there are standard sizes for lumber, making it easy to build walls that 
are multiples of a common size. There are standard sizes doors and windows, which means that 
you don't have to hand-craft every opening in your building. There are even standards for 
electrical outlets and telephone plugs (although these vary from country to country) that make it 
easier for you to mix and match electronic equipment. 

Frameworks are discussed in Chapter 28. 

In software, it's important to build systems with a clear separation of concerns so that, as the 
system evolves, changes in one part of the system don't ripple through, rending other parts of the 
system. One important way of achieving this degree of separation is by specifying clear seams in 
your system, which draw a line between those parts that may change independently. 
Furthermore, by choosing the right interfaces, you can pick standard components, libraries, and 
frameworks to implement those interfaces, without having to build them yourself. As you discover 
better implementations, you can replace the old ones without disturbing their users. 

Classes are discussed in Chapters 4 and 9; components are discussed in Chapter 25. 

In the UML, you use interfaces to model the seams in a system. An interface is a collection of 
operations used to specify a service of a class or a component. By declaring an interface, you 
can state the desired behavior of an abstraction independent of an implementation of that 
abstraction. Clients can build against that interface, and you can build or buy any implementation 
of that interface, as long as the implementation satisfies the responsibilities and the contract 
denoted by the interface. 

Packages are discussed in Chapter 12; subsystems are discussed in Chapter 31. 

Many programming languages support the concept of interfaces, including Java and CORBA IDL. 
Interfaces are not only important for dividing the specification and the implementation of a class 
or component, but as you scale up to larger systems, you can use interfaces to specify the 
outside view of a package or subsystem. 

Components are discussed in Chapter 25. 

The UML provides a graphical representation for interfaces, as Figure 11-1 shows. This notation 
permits you to visualize the specification of an abstraction apart from any implementation. 

Figure 11-1 Interfaces 



 

Terms and Concepts 
An interface is a collection of operations that are used to specify a service of a class or a 
component. A type is a stereotype of a class used to specify a domain of objects, together with 
the operations (but not the methods) applicable to the object. A role is the behavior of an entity 
participating in a particular context. Graphically, an interface is rendered as a circle; in its 
expanded form, an interface may be rendered as a stereotyped class in order to expose its 
operations and other properties. 

Use cases are discussed in Chapter 16; subsystems are discussed in Chapter 31. 

Note 

Interfaces may also be used to specify a contract for a use case or subsystem. 

 

Names 

An interface name must be unique within its enclosing package, as discussed in Chapter 12. 

Every interface must have a name that distinguishes it from other interfaces. A name is a textual 
string. That name alone is known as a simple name; a path name is the interface name prefixed 
by the name of the package in which that interface lives. An interface may be drawn showing only 
its name, as in Figure 11-2: 

Figure 11-2 Simple and Path Names 



 
Note 

An interface name may be text consisting of any number of letters, numbers, and 
certain punctuation marks (except for marks such as the colon, which is used to 
separate an interface name and the name of its enclosing package) and may continue 
over several lines. In practice, interface names are short nouns or noun phrases drawn 
from the vocabulary of the system you are modeling. To distinguish an interface from a 
class, consider prepending an I to every interface name, such as IUnknown and 
ISpelling. These same rules apply to types. To distinguish a type from an interface 
or a class, consider prepending a T to every type, such as TNatural and 
TCharacter. 

 

Operations 

Operations are discussed in Chapters 4 and 9; the UML's extensibility mechanisms are 
discussed in Chapter 6. 

An interface is a named collection of operations used to specify a service of a class or of a 
component. Unlike classes or types, interfaces do not specify any structure (so they may not 
include any attributes), nor do they specify any implementation (so they may not include any 
methods, which provide the implementation of an operation). Like a class, an interface may have 
any number of operations. These operations may be adorned with visibility properties, 
concurrency properties, stereotypes, tagged values, and constraints. 

When you visualize an interface in its normal form as a circle, by definition, you suppress the 
display of these operations. However, if it's important for your understanding of the current model, 
you can render an interface as a stereotyped class, listing its operations in the appropriate 
compartment. Operations may be drawn showing only their name, or they may be augmented to 
show their full signature and other properties, as in Figure 11-3. 

Figure 11-3 Operations 



 
Events are discussed in Chapter 20. 

Note 

You can also associate signals with an interface. 

 

Relationships 

Relationships are discussed in Chapters 5 and 10. 

Like a class, an interface may participate in generalization, association, and dependency 
relationships. In addition, an interface may participate in realization relationships. Realization is a 
semantic relationship between two classifiers in which one classifier specifies a contract that 
another classifier guarantees to carry out. 

An interface specifies a contract for a class or a component without dictating its implementation. 
A class or component may realize many interfaces. In so doing, it commits to carry out all these 
contracts faithfully, which means that it provides a set of methods that properly implement the 
operations defined in the interface. Similarly, a class or a component may depend on many 
interfaces. In so doing, it expects that these contracts will be honored by some set of components 
that realize them. This is why we say that an interface represents a seam in a system. An 
interface specifies a contract, and the client and the supplier on each side of the contract may 
change independently, as long as each fulfills its obligations to the contract. 

As Figure 11-4 illustrates, you can show that an element realizes an interface in two ways. First, 
you can use the simple form in which the interface and its realization relationship are rendered as 
a lollipop sticking off to one side of a class or component. This form is useful when you simply 
want to expose the seams in your system. However, the limitation of this style is that you can't 
directly visualize the operations or signals provided by the interface. Second, you can use the 
expanded form in which you render an interface as a stereotyped class, which allows you to 
visualize its operations and other properties, and then draw a realization relationship from the 
classifier or component to the interface. In the UML, a realization relationship is rendered as a 
dashed directed line with a large open arrowhead pointing to the interface. This notation is a 
cross between generalization and dependency. 

Figure 11-4 Realizations 



 
In both cases, you attach the class or component that builds on an interface with a dependency 
relationship from the element to the interface. 

Abstract classes are discussed in Chapter 4; components are discussed in Chapter 25. 

Note 

Interfaces are similar to abstract classes (for example, neither may have direct 
instances), but they are different enough to warrant being separate modeling elements 
in the UML. An abstract class may have attributes, but an interface may not. 
Furthermore, interfaces span model boundaries. The same interface may be realized 
by both a class (a logical abstraction) and a component (a physical abstraction that 
provides a manifestation of the class). 

 

Understanding an Interface 

Operations and their properties are discussed in Chapter 9;concurrency semantics are 
discussed in Chapter 23. 

When you are handed an interface, the first thing you'll see is a set of operations that specify a 
service of a class or a component. Look a little deeper and you'll see the full signature of those 
operations, along with any of their special properties, such as visibility, scope, and concurrency 
semantics. 

These properties are important, but for complex interfaces, they aren't enough to help you 
understand the semantics of the service they represent, much less know how to use those 
operations properly. In the absence of any other information, you'd have to dive into some 
abstraction that realizes the interface to figure out what each operation does and how those 
operations are meant to work together. However, that defeats the purpose of an interface, which 
is to provide a clear separation of concerns in a system. 



Preconditions,postconditions, andinvariants are discussed in Chapter 9;state machines are 
discussed in Chapter 21;collaborations are discussed in Chapter 27; OCL is discussed in 
Chapter 6. 

In the UML, you can supply much more information to an interface in order to make it 
understandable and approachable. First, you may attach pre- and postconditions to each 
operation and invariants to the class or component as a whole. By doing this, a client who needs 
to use an interface will be able to understand what the interface does and how to use it, without 
having to dive into an implementation. If you need to be rigorous, you can use the UML's OCL to 
formally specify the semantics. Second, you can attach a state machine to the interface. You can 
use this state machine to specify the legal partial ordering of an interface's operations. Third, you 
can attach collaborations to the interface. You can use collaborations to specify the expected 
behavior of the interface through a series of interaction diagrams. 

Types and Roles 

A class may realize many interfaces. An instance of that class must therefore support all those 
interfaces, because an interface defines a contract, and any abstraction that conforms to that 
interface must, by definition, faithfully carry out that contract. Nonetheless, in a given context, an 
instance may present only one or more of its interfaces as relevant. In that case, each interface 
represents a role that the object plays. A role names a behavior of an entity participating in a 
particular context. Stated another way, a role is the face that an abstraction presents to the world. 

Roles also play a part in collaborations, as discussed in Chapter 27. 

For example, consider an instance of the class Person. Depending on the context, that Person 
instance may play the role of Mother, Comforter, PayerOfBills, Employee, Customer, 
Manager, Pilot, Singer, and so on. When an object plays a particular role, it presents a 
face to the world, and clients that interact with it expect a certain behavior depending on the role 
that it plays at the time. For example, an instance of Person in the role of Manager would 
present a different set of properties than if the instance were playing the role of Mother. 

Associations are discussed in Chapters 5 and 10. 

In the UML, you can specify a role an abstraction presents to another abstraction by adorning the 
name of an association end with a specific interface. For example, Figure 11-5 shows the 
interface Employee, whose definition includes three operations. There exists an association 
between the classes Person and Company in which context Person plays the role e, whose 
type is Employee. In a different association, the Person might present an entirely different face 
to the world. With this explicit type, the role the Person plays is more than just a name 
meaningful to the human reader of this diagram. In the UML, this means that the Person 
presents the role of Employee to the Company, and in that context, only the properties specified 
by Employee are visible and relevant to the Company. 

Figure 11-5 Roles 

 



Class diagrams are discussed in Chapter 8; the become stereotype is discussed in Chapter 
13. 

A class diagram like this one is useful for modeling the static binding of an abstraction to its 
interface. You can model the dynamic binding of an abstraction to its interface by using the 
become stereotype in an interaction diagram, showing an object changing from one role to 
another. 

If you want to formally model the semantics of an abstraction and its conformance to a specific 
interface, you'll want to use the defined stereotype type. Type is a stereotype of class, and you 
use it to specify a domain of objects, together with the operations (but not the methods) 
applicable to the objects of that type. The concept of type is closely related to that of interface, 
except that a type's definition may include attributes while an interface may not. If you want to 
show that an abstraction is statically typed, you'll want to use implementationClass,a 
stereotype of class that specifies a class whose instances are statically typed (unlike Person in 
the example above) and that defines the physical data structure and methods of an object as 
implemented in traditional programming languages. 

Note 

For most uses, you may assume that type and interface are interchangeable. 

Common Modeling Techniques 

Modeling the Seams in a Systemeling the Seams in a System 

Components are discussed in Chapter 25; systems are discussed in Chapter 31. 

The most common purpose for which you'll use interfaces is to model the seams in a system 
composed of software components, such as COM+ or Java Beans. You'll reuse some 
components from other systems or buy off the shelf; you will create others from scratch. In any 
case, you'll need to write glue code that weaves these components together. That requires you to 
understand the interfaces provided and relied on by each component. 

Identifying the seams in a system involves identifying clear lines of demarcation in your 
architecture. On either side of those lines, you'll find components that may change independently, 
without affecting the components on the other side, as long as the components on both sides 
conform to the contract specified by that interface. 

Patterns andframeworks are discussed in Chapter 28. 

When you reuse a component from another system or when you buy it off the shelf, you'll 
probably be handed a set of operations with some minimal documentation about the meaning of 
each one. That's useful, but it's not sufficient. It's more important for you to understand the order 
in which to call each operation, and what underlying mechanisms the interface embodies. 
Unfortunately, given a poorly documented component, the best you can do is to build up, by trial 
and error, a conceptual model for how that interface works. You can then document your 
understanding by modeling that seam in the system using interfaces in the UML so that, later, you 
and others can approach that component more easily. Similarly, when you create your own 
component, you'll need to understand its context, which means specifying the interfaces it relies 
on to do its job, as well as the interfaces it presents to the world that others might build on. 

Note 

Most component systems, such as COM+ and Enterprise Java Beans, provide for 
component introspection, meaning that you can programmatically query an interface to 



determine its operations. Doing so is the first step in understanding the nature of any 
under-documented component. 

 
To model the seams in a system, 

Collaborations are discussed in Chapter 27. 

• Within the collection of classes and components in your system, draw a line around those 
that tend to be tightly coupled relative to other sets of classes and components. 

• Refine your grouping by considering the impact of change. Classes or components that 
tend to change together should be grouped together as collaborations. 

• Consider the operations and the signals that cross these boundaries, from instances of 
one set of classes or components to instances of other sets of classes and components. 

• Package logically related sets of these operations and signals as interfaces. 

• For each such collaboration in your system, identify the interfaces it relies on (imports) 
and those it provides to others (exports). You model the importing of interfaces by 
dependency relationships, and you model the exporting of interfaces by realization 
relationships. 

• For each such interface in your system, document its dynamics by using pre- and 
postconditions for each operation, and use cases and state machines for the interface as 
a whole. 

Behavioral modeling is discussed in Sections 4 and 5. 

For example, Figure 11-6 shows the seams surrounding a component (the library ledger.dll) 
drawn from a financial system. This component realizes three interfaces: IUnknown, ILedger, 
and IReports. In this diagram, IUnknown is shown in its expanded form; the other two are 
shown in their simple form, as lollipops. These three interfaces are realized by ledger.dll and 
are exported to other components for them to build on. 

Figure 11-6 Modeling the Seams in a System 

 



As this diagram also shows, ledger.dll imports two interfaces, IStreaming and 
ITransaction, the latter of which is shown in its expanded form. These two interfaces are 
required by the ledger.dll component for its proper operation. Therefore, in a running system, 
you must supply components that realize these two interfaces. By identifying interfaces such as 
ITransaction, you've effectively decoupled the components on either side of the interface, 
permitting you to employ any component that conforms to that interface. 

Use cases are discussed in Chapter 16. 

Interfaces such as ITransaction are more than just a pile of operations. This particular 
interface makes some assumptions about the order in which its operations should be called. 
Although not shown here, you could attach use cases to this interface and enumerate the 
common ways you'd use it. 

Modeling Static and Dynamic Typeseling Static and Dynamic Types 

Instances are discussed in Chapter 13. 

Most object-oriented programming languages are statically typed, which means that the type of 
an object is bound at the time the object is created. Even so, that object will likely play different 
roles over time. This means that clients that use that object interact with the object through 
different sets of interfaces, representing interesting, possibly overlapping, sets of operations. 

Class diagrams are discussed in Chapter 8. 

Modeling the static nature of an object can be visualized in a class diagram. However, when you 
are modeling things like business objects, which naturally change their roles throughout a 
workflow, it's sometimes useful to explicitly model the dynamic nature of that object's type. In 
these circumstances, an object can gain and lose types during its life. 

Associations andgeneralizations are discussed in Chapters 5 and 10. 

IInteraction diagrams are discussed in Chapter 18. 

To model a dynamic type, 

• Specify the different possible types of that object by rendering each type as a class 
stereotyped as type (if the abstraction requires structure and behavior) or as 
interface (if the abstraction requires only behavior). 

• Model all the roles the class of the object may take on at any point in time. You can do so 
in two ways: 

1. First, in a class diagram, explicitly type each role that the class plays in its 
association with other classes. Doing this specifies the face instances of that 
class put on in the context of the associated object. 

2. Second, also in a class diagram, specify the class-to-type relationships using 
generalization. 

• In an interaction diagram, properly render each instance of the dynamically typed class. 
Display the role of the instance in brackets below the object's name. 

• To show the change in role of an object, render the object once for each role it plays in 
the interaction, and connect these objects with a message stereotyped as become. 

Dependencies are discussed in Chapters 5 and 10. 



For example, Figure 11-7 shows the roles that instances of the class Person might play in the 
context of a human resources system. 

Figure 11-7 Modeling Static Types 

 
This diagram specifies that instances of the Person class may be any of the three types•
namely, Candidate, Employee, or Retiree. 

Figure 11-8 shows the dynamic nature of a person's type. In this fragment of an interaction 
diagram, p (the Person object) changes its role from Candidate to Employee. 

Figure 11-8 Modeling Dynamic Types 

 

Hints and Tips 
When you model an interface in the UML, remember that every interface should represent a 
seam in the system, separating specification from implementation. A well-structured interface 

• Is simple yet complete, providing all the operations necessary yet sufficient to specify a 
single service. 

• Is understandable, providing sufficient information to both use and realize the interface 
without having to examine an existing use or implementation. 

• Is approachable, providing information to guide the user to its key properties without 
being overwhelmed by the details of a pile of operations. 

When you draw an interface in the UML, 



• Use the lollipop notation whenever you simply need to specify the presence of a seam in 
the system. Most of the time, you'll need this for components, not classes. 

• Use the expanded form when you need to visualize the details of the service itself. Most 
of the time, you'll need this for specifying the seams in a system attached to a package or 
a subsystem. 

Chapter 12. Packages 
In this chapter 

• Packages, visibility, importing, and exporting 

• Modeling groups of elements 

• Modeling architectural views 

• Scaling up to large systems 

Visualizing, specifying, constructing, and documenting large systems involves manipulating 
potentially large numbers of classes, interfaces, components, nodes, diagrams, and other 
elements. As you scale up to systems such as these, you will find it necessary to organize these 
things into larger chunks. In the UML, the package is a general purpose mechanism for 
organizing modeling elements into groups. 

You use packages to arrange your modeling elements into larger chunks that you can manipulate 
as a group. You can control the visibility of these elements so that some things are visible outside 
the package while others are hidden. You can also use packages to present different views of 
your system's architecture. 

Well-designed packages group elements that are semantically close and that tend to change 
together. Well-structured packages are therefore loosely coupled and very cohesive, with tightly 
controlled access to the package's contents. 

Getting Started 
The differences between building a dog house and building a high rise are discussed in Chapter 
1. 

Dog houses aren't complex: you have four walls, one of them with a dog-size hole, and a roof. 
When you build a dog house, you really need only a small pile of lumber. There's not a lot more 
structure than that. 

Houses are more complex. Walls, ceilings, and floors come together in larger abstractions that 
we call rooms. Even these rooms are organized into larger chunks: the living area, the area for 
entertaining, and so on. These larger groups may not manifest themselves as anything to do with 
the physical house itself but may just be names we give to logically related rooms in the house, 
which we apply when we talk about how we'll use the house. 

High rises are very complex. Not only are there elementary structures, such as walls, ceilings, 
and floors, but there are larger chunks, such as public areas, the retail wing, and office spaces. 
These chunks are probably grouped into even larger chunks, such as rental space and building 
service area. These larger chunks may have nothing to do with the final high rise itself but are 
simply artifacts we use to organize our plans for the high rise. 



Every large system is layered in this way. In fact, about the only way you can understand a 
complex system is by chunking your abstractions into ever-larger groups. Most of these modest-
size chunks (such as room) are, in their own right, class-like abstractions for which there are 
many instances. Most of these larger chunks are purely conceptual (such as retail wing), for 
which there are no real instances. They never manifest themselves in the physical system but, 
rather, exist for the sole purpose of understanding the system itself. These latter kinds of chunks 
have no identity in the deployed system; they have identity only in the model of the system. 

Software architecture is discussed in Chapter 2; modeling the architecture of a system is 
discussed in Chapter 31. 

In the UML, the chunks that organize a model are called packages. A package is a general-
purpose mechanism for organizing elements into groups. Packages help you organize the 
elements in your models so that you can more easily understand them. Packages also let you 
control access to their contents so that you can control the seams in your system's architecture. 

The UML provides a graphical representation of package, as Figure 12-1 shows. This notation 
permits you to visualize groups of elements that can be manipulated as a whole and in a way that 
lets you control the visibility of and access to individual elements. 

Figure 12-1 Packages 

 

Terms and Concepts 
A package is a general-purpose mechanism for organizing elements into groups. Graphically, a 
package is rendered as a tabbed folder. 

Names 

A package name must be unique within its enclosing package. 

Every package must have a name that distinguishes it from other packages. A name is a textual 
string. That name alone is known as a simple name; a path name is the package name prefixed 
by the name of the package in which that package lives, if any. A package is typically drawn 
showing only its name, as in Figure 12-2. Just as with classes, you may draw packages 
adorned with tagged values or with additional compartments to expose their details. 

Figure 12-2 Simple and Extended Package 



 
Note 

A package name may be text consisting of any number of letters, numbers, and 
certain punctuation marks (except for marks such as the colon, which is used to 
separate a package name and the name of its enclosing package) and may continue 
over several lines. In practice, package names are short grouping nouns or noun 
phrases drawn from the vocabulary of the model. 

 

Owned Elements 

Composition is discussed in Chapter 10. 

A package may own other elements, including classes, interfaces, components, nodes, 
collaborations, use cases, diagrams, and even other packages. Owning is a composite 
relationship, which means that the element is declared in the package. If the package is 
destroyed, the element is destroyed. Every element is uniquely owned by exactly one package. 

A package forms a namespace, which means that elements of the same kind must be named 
uniquely within the context of its enclosing package. For example, you can't have two classes 
named Queue owned by the same package, but you can have a class named Queue in package 
P1 and another (and different) class named Queue in package P2. The classes P1::Queue and 
P2::Queue are, in fact, different classes and can be distinguished by their path names. Different 
kinds of elements may have the same name. 



Elements of different kinds may have the same name within a package. Thus, you can have a 
class named Timer, as well as a component named Timer, within the same package. In 
practice, however, to avoid confusion, it's best to name elements uniquely for all kinds within a 
package. 

Importing is discussed in a later section. 

Packages may own other packages. This means that it's possible to decompose your models 
hierarchically. For example, you might have a class named Camera that lives in the package 
Vision that in turn lives in the package Sensors. The full name of this class is 
Sensors::Vision::Camera. In practice, it's best to avoid deeply nested packages. Two to 
three levels of nesting is about the limit that's manageable. More than nesting, you'll use 
importing to organize your packages. 

These semantics of ownership make packages an important mechanism for dealing with scale. 
Without packages, you'd end up with large, flat models in which all elements would have to be 
named uniquely• an unmanageable situation, especially when you've brought in classes and 
other elements developed by multiple teams. Packages help you control the elements that 
compose your system as they evolve at different rates over time. 

As Figure 12-3 shows, you can explicitly show the contents of a package either textually or 
graphically. Note that when you show these owned elements, you place the name of the package 
in the tab. In practice, you typically won't want to show the contents of packages this way. 
Instead, you'll use tools to zoom into the contents of a package. 

Figure 12-3 Owned Elements 

 
Note 

The UML assumes that there is an anonymous, root package in a model, the 
consequence of which is that elements of each kind at the top of a model must be 
uniquely named. 

 

Visibility 

Visibility is discussed in Chapter 9. 



You can control the visibility of the elements owned by a package just as you can control the 
visibility of the attributes and operations owned by a class. Typically, an element owned by a 
package is public, which means that it is visible to the contents of any package that imports the 
element's enclosing package. Conversely, protected elements can only be seen by children, and 
private elements cannot be seen outside the package in which they are declared. In Figure 12-
3, OrderForm is a public part of the package Client, and Order is a private part. A package 
that imports Client can see OrderForm, but it cannot see Order. As viewed from the 
outside, the fully qualified name of OrderForm would be Client::OrderForm. 

You specify the visibility of an element owned by a package by prefixing the element's name with 
an appropriate visibility symbol. Public elements are rendered by prefixing their name with a + 
symbol, as for OrderForm in Figure 12-3. Collectively, the public parts of a package constitute 
the package's interface. 

Inheritance of packages is discussed in a later section. 

Just as with classes, you can designate an element as protected or private, rendered by prefixing 
the element's name with a # symbol and a - symbol, respectively. Protected elements are visible 
only to packages that inherit from another package; private elements are not visible outside the 
package at all. 

Friend dependency relationships are discussed in Chapter 10. 

Note 

Packages that are friends to another may see all the elements of that package, no 
matter what their visibility. 

 

Importing and Exporting 

Suppose you have two classes named A and B sitting side by side. Because they are peers, A 
can see B and B can see A, so both can depend on the other. Just two classes makes for a trivial 
system, so you really don't need any kind of packaging. 

Now, imagine having a few hundred such classes sitting side by side. There's no limit to the 
tangled web of relationships that you can weave. Furthermore, there's no way that you can 
understand such a large, unorganized group of classes. That's a very real problem for large 
systems• simple, unrestrained access does not scale up. For these situations, you need some 
kind of controlled packaging to organize your abstractions. 

Dependency relationships are discussed in Chapter 5; the UML's extensibility mechanisms are 
discussed in Chapter 6. 

So suppose that instead you put A in one package and B in another package, both packages 
sitting side by side. Suppose also that A and B are both declared as public parts of their 
respective packages. This is a very different situation. Although A and B are both public, neither 
can access the other because their enclosing packages form an opaque wall. However, if A's 
package imports B's package, A can now see B, although B cannot see A. Importing grants a 
one-way permission for the elements in one package to access the elements in another package. 
In the UML, you model an import relationship as a dependency adorned with the stereotype 
import. By packaging your abstractions into meaningful chunks and then controlling their 
access by importing, you can control the complexity of large numbers of abstractions. 



Note 

Actually, two stereotypes apply here• import and access•  and both specify that 
the source package has access to the contents of the target. Import adds the 
contents of the target to the source's namespace, and so you don't have to qualify 
their names. This admits the possibility of name clashes which you must avoid to keep 
the model well-formed. Access does not add the contents of the target, and so you do 
have to qualify their names. Most of the time you'll use import. 

 

Interfaces, an element often exported by packages, are discussed in Chapter 11. 

The public parts of a package are called its exports. For example, in Figure 12-4, the package 
GUI exports two classes, Window and Form. EventHandler is not exported by GUI; 
EventHandler is a protected part of the package. 

Figure 12-4 Importing and Exporting 

 
The parts that one package exports are visible only to the contents of those packages that 
explicitly import the package. In this example, Policies explicitly imports the package GUI. 
GUI::Window and GUI::Form are therefore made visible to the contents of the package 
Policies. However, GUI::EventHandler is not visible because it is protected. Because the 
package Server doesn't import GUI, the contents of Server don't have permission to access 
any of the contents of GUI. Similarly, the contents of GUI don't have permission to access any of 
the contents of Server. 



Import and access dependencies are not transitive. In this example, Client imports Policies 
and Policies imports GUI, but Client does not by implication import GUI. Therefore, the 
contents of Client have access to the exports of Policies, but they do not have access to 
the exports of GUI. To gain access, Client would have to import GUI explicitly. 

Note 

If an element is visible within a package, it is visible within all packages nested inside 
the package. Nested packages can see everything that their containing packages can 
see. 

 

Generalization 

Generalization is discussed in Chapters 5 and 10. 

There are two kinds of relationships you can have between packages: import and access 
dependencies, used to import into one package elements exported from another, and 
generalizations, used to specify families of packages. 

Generalization among packages is very much like generalization among classes. For example, in 
Figure 12-5, the package GUI is shown to export two classes (Window and Form) and one 
protected class (EventHandler). Two packages specialize the more general package GUI: 
WindowsGUI and MacGUI. These specialized packages inherit the public and protected 
elements of the more general package. But, just as in class inheritance, packages can replace 
more general elements and add new ones. For example, the package WindowsGUI inherits from 
GUI, so it includes the classes GUI::Window and GUI::EventHandler. In addition, 
WindowsGUI overrides one class (Form) and adds a new one (VBForm). 

Figure 12-5 Generalization Among Packages 

 
Packages involved in generalization relationships follow the same principle of substitutability as 
do classes. A specialized package (such as WindowsGUI) can be used anywhere a more 
general package (such as GUI) is used. 



Standard Elements 

The UML's extensibility mechanisms are discussed in Chapter 6. 

All of the UML's extensibility mechanisms apply to packages. Most often, you'll use tagged values 
to add new package properties (such as specifying the author of a package) and stereotypes to 
specify new kinds of packages (such as packages that encapsulate operating system services). 

The UML's standard elements are summarized in Appendix B. 

The UML defines five standard stereotypes that apply to packages. 

1. facade  Specifies a package that is only a view on some other package 
2. 
framework  

Specifies a package consisting mainly of patterns 

3. stub  Specifies a package that serves as a proxy for the public contents of another 
package 

4. 
subsystem  

Specifies a package representing an independent part of the entire system 
being modeled 

5. system  Specifies a package representing the entire system being modeled 

Dependencies are discussed in Chapters 5 and 10. 

The UML does not specify icons for any of these stereotypes. In addition to these five package 
stereotypes, you'll also use dependencies designated using the standard stereotype import. 

Frameworks are discussed in Chapter 28; systems and subsystems are discussed in Chapter 
31. 

Most of these standard elements are discussed elsewhere, except for facade and stub. These 
two stereotypes help you to manage very large models. You use facades to provide elided views 
on otherwise complex packages. For example, your system might contain the package 
BusinessModel. You might want to expose a subset of its elements to one set of users (to 
show only those elements associated with customers), and another subset to a different set of 
users (to show only those elements associated with products). To do so, you would define 
facades, which import (and never own) only a subset of the elements in another package. You 
use stubs when you have tools that split apart a system into packages that you manipulate at 
different times and potentially in different places. For example, if you have a development team 
working in two locations, the team at one site would provide a stub for the packages the other 
team required. This strategy lets the teams work independently without disturbing each other's 
work, with the stub packages capturing the seams in the system that must be managed carefully. 

Common Modeling Techniques 
Modeling Groups of Elements 

The most common purpose for which you'll use packages is to organize modeling elements into 
groups that you can name and manipulate as a set. If you are developing a trivial application, you 
won't need packages at all. All your abstractions will fit nicely into one package. For every other 
system, however, you'll find that many of your system's classes, interfaces, components, nodes, 
and even diagrams tend to naturally fall into groups. You model these groups as packages. 

Systems and subsystems, which are similar to packages but have identity, are discussed in 
Chapter 31. 



There is one important distinction between classes and packages: Classes are abstractions of 
things found in your problem or solution; packages are mechanisms you use to organize the 
things in your model. Packages have no identity (meaning that you can't have instances of 
packages, so they are invisible in the running system); classes do have identity (classes have 
instances, which are elements of a running system). 

The five views of an architecture are discussed in Chapter 2. 

Most of the time, you'll use packages to group the same basic kind of elements. For example, you 
might separate all the classes and their corresponding relationships from your system's design 
view into a series of packages, using the UML's import dependencies to control access among 
these packages. You might organize all the components in your system's implementation view in 
a similar fashion. 

You can also use packages to group different kinds of elements. For example, for a system being 
developed by a geographically distributed team, you might use packages as your unit of 
configuration management, putting in them all the classes and diagrams that each team can 
check in and check out separately. In fact, it's common to use packages to group modeling 
elements and their associated diagrams. 

To model groups of elements, 

• Scan the modeling elements in a particular architectural view and look for clumps defined 
by elements that are conceptually or semantically close to one another. 

• Surround each of these clumps in a package. 

• For each package, distinguish which elements should be accessible outside the package. 
Mark them public, and all others protected or private. When in doubt, hide the element. 

• Explicitly connect packages that build on others via import dependencies. 

• In the case of families of packages, connect specialized packages to their more general 
part via generalizations. 

For example, Figure 12-6 shows a set of packages that organize the classes in an information 
system's design view into a classic three-tier architecture. The elements in the package User 
Services provide the visual interface for presenting information and gathering data. The 
elements in the package Data Services maintain, access, and update data. The elements in 
the package Business Services bridge the elements in the other two packages and 
encompass all the classes and other elements that manage requests from the user to execute a 
business task, including business rules that dictate the policies for manipulating data. 

Figure 12-6 Modeling Groups of Elements 



 
In a trivial system, you could lump all your abstractions into one package. However, by organizing 
your classes and other elements of the system's design view into three packages, you not only 
make your model more understandable, but you can control access to the elements of your 
model by hiding some and exporting others. 



The documentation tagged value is discussed in Chapter 6. 

Note 

When you render models such as these, you'll typically want to expose elements that 
are central to each package. To make clear the purpose of each package, you can 
also expose a documentation tagged value for each package. 

 

Modeling Architectural Views 

The five views of an architecture are discussed in Chapter 2. 

Using packages to group related elements is important; you can't develop complex models 
without doing so. This approach works well for organizing related elements, such as classes, 
interfaces, components, nodes, and diagrams. As you consider the different views of a software 
system's architecture, you need even larger chunks. You can use packages to model the views of 
an architecture. 

Views are related to models, as discussed in Chapter 31. 

Remember that a view is a projection into the organization and structure of a system, focused on 
a particular aspect of that system. This definition has two implications. First, you can decompose 
a system into almost orthogonal packages, each of which addresses a set of architecturally 
significant decisions. For example, you might have a design view, a process view, an 
implementation view, a deployment view, and a use case view. Second, these packages own all 
the abstractions germane to that view. For example, all the components in your model would 
belong to the package that represents the implementation view. 

Note 

In this regard, packages as views are different from facades. Views own their 
elements; facades reference the elements that live in other packages. A given element 
may be owned by exactly one package, but the same element can be referenced by 
many facades. 

 
To model architectural views, 

• Identify the set of architectural views that are significant in the context of your problem. In 
practice, this typically includes a design view, a process view, an implementation view, a 
deployment view, and a use case view. 

• Place the elements (and diagrams) that are necessary and sufficient to visualize, specify, 
construct, and document the semantics of each view into the appropriate package. 

• As necessary, further group these elements into their own packages. 

• There will typically be dependencies across the elements in different views. So, in 
general, let each view at the top of a system be open to all others at that level. 

Modeling systems is discussed in Chapter 31. 



For example, Figure 12-7 illustrates a canonical top-level decomposition that's appropriate for 
even the most complex system you might encounter. 

Figure 12-7 Modeling Architectural Views 

 

Hints and Tips 
When you model packages in the UML, remember that they exist only to help you organize the 
elements of your model. If you have abstractions that manifest themselves as objects in the real 
system, don't use packages. Instead, use modeling elements such as classes or components. A 
well-structured package 

• Is cohesive, providing a crisp boundary around a set of related elements. 

• Is loosely coupled, exporting only those elements other packages really need to see, and 
importing only those elements necessary and sufficient for the elements in the package 
to do their job. 

• Is not deeply nested, because there are limits to the human understanding of deeply 
nested structures. 

• Owns a balanced set of contents; relative to one another in a system, packages should 
not be too large (split them up if necessary) or too small (combine elements that you 
manipulate as a group). 

When you draw a package in the UML, 

• Use the simple form of a package icon unless it's necessary for you to explicitly reveal 
the contents of that package. 

• When you do reveal a package's contents, show only elements that are necessary to 
understand the meaning of that package in context. 

• Especially if you are using packages to model things under configuration management, 
reveal the values of tags associated with versioning. 

Chapter 13. Instances 



In this chapter 

• Instances and objects 

• Modeling concrete instances 

• Modeling prototypical instances 

• The real and conceptual world of instances 

The terms "instance" and "object" are largely synonymous and so, for the most part, may be used 
interchangeably. An instance is a concrete manifestation of an abstraction to which a set of 
operations may be applied and which may have a state that stores the effects of the operation. 

You use instances to model concrete or prototypical things that live in the real world. Almost 
every building block in the UML participates in this class/ object dichotomy. For example, you can 
have use cases and use case instances, nodes and node instances, associations and association 
instances, and so on. 

Getting Started 
Suppose you've set out to build a house for your family. By saying "house" rather than "car," 
you've already begun to narrow the vocabulary of your solution space. House is an abstraction of 
"a permanent or semipermanent dwelling the purpose of which is to provide shelter." Car is "a 
mobile, powered vehicle the purpose of which is to transport people from place to place." As you 
work to reconcile the many competing requirements that shape your problem, you'll want to refine 
your abstraction of this house. For example, you might choose "a three bedroom house with a 
walkout basement," a kind of house, albeit a more specialized one. 

When your builder finally hands you the keys to your house and you and your family walk through 
the front door, you are now dealing with something concrete and specific. It's no longer just a 
three bedroom house with a walkout, but it's "my three bedroom house with a walkout basement, 
located at 835 S. Moore Street." If you are terminally sentimental, you might even name your 
house something like Sanctuary or Our Money Pit. 

There's a fundamental difference between a three bedroom house with a walkout basement and 
my three bedroom house named Sanctuary. The former is an abstraction representing a certain 
kind of house with various properties; the latter is a concrete instance of that abstraction, 
representing some thing that manifests itself in the real world, with real values for each of those 
properties. 

An abstraction denotes the ideal essence of a thing; an instance denotes a concrete 
manifestation. You'll find this separation of abstraction and instance in everything you model. For 
a given abstraction, you can have innumerable instances. For a given instance, there is some 
abstraction that specifies the characteristics common to all such instances. 

Classes are discussed in Chapters 4 and 9; components are discussed in Chapter 29; nodes 
are discussed in Chapter 26; use cases are discussed in Chapter 16. 

In the UML, you can represent abstractions and their instances. Almost every building block in the 
UML• most notably classes, components, nodes, and use cases• may be modeled in terms of 
their essence or in terms of their instances. Most of the time, you'll work with them as 
abstractions. When you want to model concrete or prototypical manifestations, you'll need to work 
with their instances. 

The UML provides a graphical representation for instances, as Figure 13-1 shows. This notation 
permits you to visualize named instances, as well as anonymous ones. 



Figure 13-1 Instances 

 

Terms and Concepts 
The UML's class/object dichotomy is discussed in Chapter 2. 

An instance is a concrete manifestation of an abstraction to which a set of operations can be 
applied and which has a state that stores the effects of the operations. Instance and object are 
largely synonymous. Graphically, an instance is rendered by underlining its name. 

Associations are discussed in Chapters 5 and 10; links are discussed in Chapters 14 and 15. 

Note 

From common usage, the concrete manifestation of a class is called an object. 
Objects are instances of classes, so it's excruciatingly proper to say that all objects are 
instances, although some instances are not objects (for example, an instance of an 
association is really not an object, it's just an instance, also known as a link). Only 
power modelers will really care about this subtle distinction. 

 

Abstractions and Instances 

Classifiers are discussed in Chapter 9. 

Instances don't stand alone; they are almost always tied to an abstraction. Most instances you'll 
model with the UML will be instances of classes (and these things are called objects), although 
you can have instances of other things, such as components, nodes, use cases, and 
associations. In the UML, an instance is easily distinguishable from an abstraction. To indicate an 
instance, you underline its name. 

In a general sense, an object is something that takes up space in the real or conceptual world, 
and you can do things to it. For example, an instance of a node is typically a computer that 
physically sits in a room; an instance of a component takes up some space on the file system; an 
instance of a customer record consumes some amount of physical memory. Similarly, an 
instance of a flight envelope for an aircraft is something you can manipulate mathematically. 

Abstractclasses are discussed in Chapter 9; interfaces are discussed in Chapter 11. 

You can use the UML to model these physical instances, but you can also model things that are 
not so concrete. For example, an abstract class, by definition, may not have any direct instances. 



However, you can model indirect instances of abstract classes in order to show the use of a 
prototypical instance of that abstract class. Literally, no such object might exist. But pragmatically, 
this instance lets you name one of any potential instances of concrete children of that abstract 
class. This same touch applies to interfaces. By their very definition, interfaces may not have any 
direct instances, but you can model a prototypical instance of an interface, representing one of 
any potential instances of concrete classes that realize that interface. 

Object diagrams are discussed in Chapter 14; interaction diagrams are discussed in Chapter 
18; activity diagrams are discussed in Chapter 19; dynamic typing is discussed in Chapter 11; 
classifiers are discussed in Chapter 9. 

When you model instances, you'll place them in object diagrams (if you want to visualize their 
structural details) or in interaction and activity diagrams (if you want to visualize their participation 
in dynamic situations). Although typically not necessary, you can place objects in class diagrams 
if you want to explicitly show the relationship of an object to its abstraction. 

The classifier of an instance is usually static. For example, once you create an instance of a 
class, its class won't change during the lifetime of that object. In some modeling situations and in 
some programming languages, however, it is possible to change the abstraction of an instance. 
For example, a Caterpillar object might become a Butterfly object. It's the same object, 
but of a different abstraction. 

Note 

During development, it's also possible for you to have instances with no associated 
classifier, which you can render as an object but with its abstraction name missing, as 
in Figure 13-2. You can introduce orphan objects such as these when you need to 
model very abstract behavior, although you must eventually tie such instances to an 
abstraction if you want to enforce any degree of semantics about the object. 

Figure 13-2 Named, Anonymous, Multiple, and Orphan Instances 

 

 

Names 

Operations are discussed in Chapters 4 and 9; components are discussed in Chapter 25; 
nodes are discussed in Chapter 26. 

Every instance must have a name that distinguishes it from other instances within its context. 
Typically, an object lives within the context of an operation, a component, or a node. A name is a 



textual string, such as t and myCustomer in Figure 13-2. That name alone is known as a 
simple name. The abstraction of the instance may be a simple name (such as Transaction) or 
it may be a path name (such as Multimedia::AudioStream) which is the abstraction's name 
prefixed by the name of the package in which that abstraction lives. 

When you explicitly name an object, you are really giving it a name (such as t) that's usable by a 
human. You can also simply name an object (such as aCustomer) and elide its abstraction if it's 
obvious in the given context. In many cases, however, the real name of an object is known only to 
the computer on which that object lives. In such cases, you can render an anonymous object 
(such as : Multimedia::AudioStream). Each occurrence of an anonymous object is 
considered distinct from all other occurrences. If you don't even know the object's associated 
abstraction, you must at least give it an explicit name (such as agent :). 

You can use stereotypes to denote the kind of collection represented by a multiobject. 
Stereotypes are discussed in Chapter 6. 

Especially when you are modeling large collections of objects, it's clumsy to render the collection 
itself plus its individual instances. Instead, you can model multiobjects (such as : keyCode) as 
in Figure 13-2, representing a collection of anonymous objects. 

Note 

An instance name may be text consisting of any number of letters, numbers, and 
certain punctuation marks (except for marks such as the colon, which is used to 
separate the name of the instance from the name of its abstraction) and may continue 
over several lines. In practice, instance names are short nouns or noun phrases drawn 
from the vocabulary of the system you are modeling. Typically, you capitalize the first 
letter of all but the first word in an instance name, as in t or myCustomer. 

 

Operations 

Operations are discussed in Chapters 4 and 9; polymorphism is discussed in Chapter 9. 

Not only is an object something that usually takes up space in the real world, it is also something 
you can do things to. The operations you can perform on an object are declared in the object's 
abstraction. For example, if the class Transaction defines the operation commit, then given 
the instance t : Transaction, you can write expressions such as t.commit(). The 
execution of this expression means that t (the object) is operated on by commit (the operation). 
Depending on the inheritance lattice associated with Transaction, this operation may or may 
not be invoked polymorphically. 

State 

Attributes are discussed in Chapter 4; interaction diagrams are discussed in Chapter 18. 
Another way to show the changing state of an individual object over time is via state machines, 
which are discussed in Chapter 21. 

An object also has state, which in this sense encompasses all the (usually static) properties of the 
object plus the current (usually dynamic) values of each of these properties. These properties 
include the attributes of the object, as well as all its aggregate parts. An object's state is therefore 
dynamic. So when you visualize its state, you are really specifying the value of its state at a given 
moment in time and space. It's possible to show the changing state of an object by showing it 



multiple times in the same interaction diagram, but with each occurrence representing a different 
state. 

When you operate on an object, you typically change its state; when you query an object, you 
don't change its state. For example, when you make an airline reservation (represented by the 
object r : Reservation), you might set the value of one of its attributes (for example, price 
= 395.75). If you change your reservation, perhaps by adding a new leg to your itinerary, then 
its state might change (for example, price = 1024.86). 

As Figure 13-3 shows, you can use the UML to render the value of an object's attributes. For 
example, myCustomer is shown with the attribute id having the value "432-89-1783." In this 
case, id's type (SSN) is shown explicitly, although it can be elided (as for active = True), 
because its type can be found in the declaration of id in myCustomer's associated class. 

Figure 13-3 Object State 

 
You can associate a state machine with a class, which is especially useful when modeling event-
driven systems or when modeling the lifetime of a class. In these cases, you can also show the 
state of this machine for a given object at a given time. For example, as Figure 13-3 shows, the 
object c (an instance of the class Phone) is indicated in the state WaitingForAnswer, a 
named state defined in the state machine for Phone. 

Note 

Because an object may be in several states simultaneously, you can also show a list 
of its current states. 

 

Other Features 

Processes and threads are discussed in Chapter 22. 

Processes and threads are an important element of a system's process view, so the UML 
provides a visual cue to distinguish elements that are active (those that are part of a process or 
thread and represent a root of a flow of control) from those that are passive. You can declare 



active classes that reify a process or thread, and in turn you can distinguish an instance of an 
active class, as in Figure 13-4. 

Figure 13-4 Active Objects 

 
Interaction diagrams are discussed in Chapter 18. 

Note 

Most often, you'll use active objects in the context of interaction diagrams that model 
multiple flows of control. Each active object represents the root of a flow of control and 
may be used to name distinct flows. 

 

Links are discussed in Chapters 14 and 15; class scoped attributes and operations are 
discussed in Chapter 9. 

There are two other elements in the UML that may have instances. The first is a link. A link is a 
semantic connection among objects. An instance of an association is therefore a link. A link is 
rendered as a line, just like an association, but it can be distinguished from an association 
because links only connect objects. The second is a class-scoped attribute and operation. A 
class-scoped feature is in effect an object in the class that is shared by all instances of the class. 

Standard Elements 

The UML's extensibility mechanisms are discussed in Chapter 6. 

All of the UML's extensibility mechanisms apply to objects. Usually, however, you don't 
stereotype an instance directly, nor do you give it its own tagged values. Instead, an object's 
stereotype and tagged values derive from the stereotype and tagged values of its associated 
abstraction. For example, as Figure 13-5 shows, you can explicitly indicate an object's 
stereotype, as well as its abstraction. 

Figure 13-5 Stereotyped Objects 

 



The UML's standard elements are summarized in Appendix B. 

The UML defines two standard stereotypes that apply to the dependency relationships among 
objects and among classes: 

1. instanceOf  Specifies that the client object is an instance of the supplier classifier 
2. instantiate  Specifies that the client class creates instances of the supplier class 

Become and copy are discussed in Chapter 18. 

There are also two stereotypes related to objects that apply to messages and transitions: 

1. 
become  

Specifies that the client is the same object as the supplier, but at a later time and with 
possibly different values, state, or roles 

2. copy  Specifies that the client object is an exact but independent copy of the supplier 

Persistence is discussed in Chapter 29; interactions are discussed in Chapter 15. 

The UML defines a standard constraint that applies to objects: 

� 
transient  

Specifies that an instance of the role is created during execution of the enclosing 
interaction but is destroyed before completion of execution 

Common Modeling Techniques 
Modeling Concrete Instances 

When you model concrete instances, you are in effect visualizing things that live in the real world. 
You can't exactly see an instance of a Customer class, for example, unless that customer is 
standing beside you; in a debugger, you might be able to see a representation of that object, 
however. 

Component diagrams are discussed in Chapter 29; deployment diagrams are discussed in 
Chapter 30; object diagrams are discussed in Chapter 14. 

One of the things for which you'll use objects is to model concrete instances that exist in the real 
world. For example, if you want to model the topology of your organization's network, you'll use 
deployment diagrams containing instances of nodes. Similarly, if you want to model the 
components that live on the physical nodes in this network, you'll use component diagrams 
containing instances of the components. Finally, suppose you have a debugger connected to 
your running system; it can present the structural relationships among instances by rendering an 
object diagram. 

To model concrete instances, 

• Identify those instances necessary and sufficient to visualize, specify, construct, or 
document the problem you are modeling. 

• Render these objects in the UML as instances. Where possible, give each object a name. 
If there is no meaningful name for the object, render it as an anonymous object. 

• Expose the stereotype, tagged values, and attributes (with their values) of each instance 
necessary and sufficient to model your problem. 

• Render these instances and their relationships in an object diagram or other diagram 
appropriate to the kind of the instance. 



For example, Figure 13-6 shows an object diagram drawn from the execution of a credit card 
validation system, perhaps as seen by a debugger that's probing the running system. There is 
one multiobject, containing anonymous instances of the class Transaction. There are also two 
explicitly named objects• primaryAgent and current• both of which expose their class, 
although in different ways. The diagram also explicitly shows the current state of the object 
primaryAgent. 

Figure 13-6 Modeling Concrete Instances 

 
Note also the use of the dependency stereotyped as instanceOf, indicating the class of 
primaryAgent. Typically, you'll want to explicitly show these class/object relationships only if 
you also intend to show relationships with other classes. 

Modeling Prototypical Instances 

Interactions are discussed in Chapter 18. 

Perhaps the most important thing for which you'll use instances is to model the dynamic 
interactions among objects. When you model such interactions, you are generally not modeling 
concrete instances that exist in the real world. Instead, you are modeling conceptual objects that 
are essentially proxies or stand-ins for objects that will eventually act that way in the real world. 
These are prototypical objects and, therefore, are roles to which concrete instances conform. For 
example, if you want to model the ways objects in a windowing application react to a mouse 
event, you'd draw an interaction diagram containing prototypical instances of windows, events, 
and handlers. 

Note 

The semantic difference between concrete objects and prototypical objects is subtle 
and of relevance only to power modelers. As a typical user, you won't notice the 
difference at all. To be precise, however, the UML uses the term classifier role to 
denote a role to which instances conform, a subtle distinction that is context 
dependent. Concrete objects appear in static places, such as object diagrams, 
component diagrams, and deployment diagrams. Prototypical objects appear in such 
places as interaction diagrams and activity diagrams. 

 
To model prototypical instances, 

• Identify those prototypical instances necessary and sufficient to visualize, specify, 
construct, or document the problem you are modeling. 



• Render these objects in the UML as instances. Where possible, give each object a name. 
If there is no meaningful name for the object, render it as an anonymous object. 

• Expose the properties of each instance necessary and sufficient to model your problem. 

• Render these instances and their relationships in an interaction diagram or an activity 
diagram. 

Interaction diagrams are discussed in Chapter 15; activity diagrams are discussed in Chapter 
19. 

Figure 13-7 shows an interaction diagram illustrating a partial scenario for initiating a phone call 
in the context of a switch. There are four prototypical objects: a (a CallingAgent), c (a 
Connection), and t1 and t2 (both instances of Terminal). All four of these objects are 
prototypical; all represent conceptual proxies for concrete objects that may exist in the real world. 

Figure 13-7 Modeling Prototypical Instances 

 
Note 

This example is a collaboration, which represents a society of roles and other 
elements that work together to provide some cooperative behavior that's bigger than 
the sum of all the elements. Collaborations have two aspects• one structural 
(representing the classifier roles and their relationships) and one dynamic 
(representing the interactions among those prototypical instances). 

Hints and Tips 
When you model instances in the UML, remember that every instance should denote a concrete 
manifestation of some abstraction, typically a class, component, node, use case, or association. 
A well-structured instance 

• Is explicitly associated with a specific abstraction. 

• Has a unique name drawn from the vocabulary of the problem domain or the solution 
domain. 

When you draw an instance in the UML, 

• Render the name of the abstraction of which it is an instance unless it's obvious by 
context. 



• Show the instance's stereotype, role, and state only as necessary to understand the 
object in its context. 

• If visible, organize long lists of attributes and their values by grouping them according to 
their category. 

Chapter 14. Object Diagrams 
In this chapter 

• Modeling object structures 

• Forward and reverse engineering 

Object diagrams model the instances of things contained in class diagrams. An object diagram 
shows a set of objects and their relationships at a point in time. 

You use object diagrams to model the static design view or static process view of a system. This 
involves modeling a snapshot of the system at a moment in time and rendering a set of objects, 
their state, and their relationships. 

Object diagrams are not only important for visualizing, specifying, and documenting structural 
models, but also for constructing the static aspects of systems through forward and reverse 
engineering. 

Getting Started 
If you are not used to the game, soccer looks like a terribly simple sport• an unruly mob of 
people madly running about a field chasing a white ball. Looking at the blurred image of bodies in 
motion, there hardly seems to be any subtlety or style to it. 

Freeze the motion for a moment, then classify the individual players, and a very different picture 
of the game emerges. No longer just a mass of humanity, you'll be able to distinguish the 
forwards, halfbacks, and fullbacks. Dig a bit deeper and you'll understand how these players 
collaborate, following strategies for goal-tending, moving the ball, stealing the ball, and attacking. 
In a winning team, you won't find players placed randomly around the field. Instead, at every 
moment of the game, you'll find their placement on the field and their relationship to other players 
well calculated. 

Trying to visualize, specify, construct, or document a software-intensive system is similar. If you 
were to trace the control flow of a running system, you'd quickly lose sight of the bigger picture for 
how the system's parts are organized, especially if you have multiple threads of control. Similarly, 
if you have a complex data structure, just looking at the state of one object at a time doesn't help 
much. Rather, you need to study a snapshot of the object, its neighbors, and its relationships to 
these neighbors. In all but the simplest object-oriented systems, you'd find a multitude of objects 
present, each standing in precise relationship with others. In fact, when an object-oriented system 
breaks, it's typically not because of a failure in logic, but because of broken connections among 
objects or a mangled state in individual objects. 

Class diagrams are discussed in Chapter 8; interactions are discussed in Chapter 15; 
interaction diagrams are discussed in Chapter 18. 

With the UML, you use class diagrams to visualize the static aspects of your system's building 
blocks. You use interaction diagrams to visualize the dynamic aspects of your system, consisting 
of instances of these building blocks and messages dispatched among them. An object diagram 
covers a set of instances of the things found in a class diagram. An object diagram, therefore, 



expresses the static part of an interaction, consisting of the objects that collaborate, but without 
any of the messages passed among them. In both cases, an object diagram freezes a moment in 
time, as in Figure 14-1. 

Figure 14-1 An Object Diagram 

 

Terms and Concepts 
An object diagram is a diagram that shows a set of objects and their relationships at a point in 
time. Graphically, an object diagram is a collection of vertices and arcs 

Common Properties 

The general properties of diagrams are discussed in Chapter 7. 

An object diagram is a special kind of diagram and shares the same common properties as all 
other diagrams• that is, a name and graphical contents that are a projection into a model. What 
distinguishes an object diagram from all other kinds of diagrams is its particular content. 

Contents 

Objects are discussed in Chapter 13; links are discussed in Chapter 15; packages are 
discussed in Chapter 12; subsystems are discussed in Chapter 31. 

Object diagrams commonly contain 

• Objects 

• Links 

Like all other diagrams, object diagrams may contain notes and constraints. 



Object diagrams may also contain packages or subsystems, both of which are used to group 
elements of your model into larger chunks. Sometimes, you'll want to place classes in your object 
diagrams, as well, especially when you want to visualize the classes behind each instance. 

Class diagrams are discussed in Chapter 8; interaction diagrams are discussed in Chapter 18. 

Note 

An object diagram is essentially an instance of a class diagram or the static part of an 
interaction diagram. In either case, an object diagram contains primarily objects and 
links, and focuses on concrete or prototypical instances. Both component diagrams 
and deployment diagrams may contain instances, and if they contain only instances 
(and no messages), they too are considered to be special kinds of object diagrams. 

 

Common Uses 

Design views are discussed in Chapter 2. 

You use object diagrams to model the static design view or static process view of a system just 
as you do with class diagrams, but from the perspective of real or prototypical instances. This 
view primarily supports the functional requirements of a system• that is, the services the system 
should provide to its end users. Object diagrams let you model static data structures. 

When you model the static design view or static process view of a system, you typically use 
object diagrams in one way: 

• To model object structures 

Interaction diagrams are discussed in Chapter 18. 

Modeling object structures involves taking a snapshot of the objects in a system at a given 
moment in time. An object diagram represents one static frame in the dynamic storyboard 
represented by an interaction diagram. You use object diagrams to visualize, specify, construct, 
and document the existence of certain instances in your system, together with their relationships 
to one another. 

Common Modeling Techniques 

Modeling Object Structures 

When you construct a class diagram, a component diagram, or a deployment diagram, what you 
are really doing is capturing a set of abstractions that are interesting to you as a group and, in 
that context, exposing their semantics and their relationships to other abstractions in the group. 
These diagrams show only potentiality. If class A has a one-to-many association to class B, then 
for one instance of A there might be five instances of B; for another instance of A there might be 
only one instance of B. Furthermore, at a given moment in time, that instance of A, along with 
the related instances of B, will each have certain values for their attributes and state machines. 

If you freeze a running system or just imagine a moment of time in a modeled system, you'll find a 
set of objects, each in a specific state, and each in a particular relationship to other objects. You 
can use object diagrams to visualize, specify, construct, and document the structure of these 
objects. Object diagrams are especially useful for modeling complex data structures. 



When you model your system's design view, a set of class diagrams can be used to completely 
specify the semantics of your abstractions and their relationships. With object diagrams, however, 
you cannot completely specify the object structure of your system. For an individual class, there 
may be a multitude of possible instances, and for a set of classes in relationship to one another, 
there may be many times more possible configurations of these objects. Therefore, when you use 
object diagrams, you can only meaningfully expose interesting sets of concrete or prototypical 
objects. This is what it means to model an object structure• an object diagram shows one set of 
objects in relation to one another at one moment in time. 

To model an object structure, 

Mechanisms such as these are often coupled to use cases, as discussed in Chapters 16 and 
28. 

• Identify the mechanism you'd like to model. A mechanism represents some function or 
behavior of the part of the system you are modeling that results from the interaction of a 
society of classes, interfaces, and other things. 

• For each mechanism, identify the classes, interfaces, and other elements that participate 
in this collaboration; identify the relationships among these things, as well. 

• Consider one scenario that walks through this mechanism. Freeze that scenario at a 
moment in time, and render each object that participates in the mechanism. 

• Expose the state and attribute values of each such object, as necessary, to understand 
the scenario. 

• Similarly, expose the links among these objects, representing instances of associations 
among them. 

For example, Figure 14-2 shows a set of objects drawn from the implementation of an 
autonomous robot. This figure focuses on some of the objects involved in the mechanism used by 
the robot to calculate a model of the world in which it moves. There are many more objects 
involved in a running system, but this diagram focuses on only those abstractions that are directly 
involved in creating this world view. 

Figure 14-2 Modeling Object Structures 



 
As this figure indicates, one object represents the robot itself (r, an instance of Robot), and r is 
currently in the state marked moving. This object has a link to w, an instance of World, which 
represents an abstraction of the robot's world model. This object has a link to a multiobject that 
consists of instances of Element, which represent entities that the robot has identified but not 
yet assigned in its world view. These elements are marked as part of the robot's global state. 

At this moment in time, w is linked to two instances of Area. One of them (a2) is shown with its 
own links to three Wall and one Door object. Each of these walls is marked with its current 
width, and each is shown linked to its neighboring walls. As this object diagram suggests, the 
robot has recognized this enclosed area, which has walls on three sides and a door on the fourth. 

Forward and Reverse Engineering 

Forward engineering (the creation of code from a model) an object diagram is theoretically 
possible but pragmatically of limited value. In an object-oriented system, instances are things that 
are created and destroyed by the application during run time. Therefore, you can't exactly 
instantiate these objects from the outside. 

Component diagrams are discussed in Chapter 29; deployment diagrams are discussed in 
Chapter 30. 

Although this is true of most typical object diagrams (which contain instances of classes), it's not 
true of object diagrams containing instances of components and of nodes. Both of these are 
special cases of component diagrams and deployment diagrams, respectively, and are discussed 
elsewhere. In these cases, component instances and node instances are things that live outside 
the running system and are amenable to some degree of forward engineering. 

Reverse engineering (the creation of a model from code) an object diagram is a very different 
thing. In fact, while you are debugging your system, this is something that you or your tools will do 
all the time. For example, if you are chasing down a dangling link, you'll want to literally or 
mentally draw an object diagram of the affected objects to see where, at a given moment in time, 
an object's state or its relationship to other objects is broken. 

To reverse engineer an object diagram, 



• Chose the target you want to reverse engineer. Typically, you'll set your context inside an 
operation or relative to an instance of one particular class. 

• Using a tool or simply walking through a scenario, stop execution at a certain moment in 
time. 

• Identify the set of interesting objects that collaborate in that context and render them in 
an object diagram. 

• As necessary to understand their semantics, expose these object's states. 

• As necessary to understand their semantics, identify the links that exist among these 
objects. 

• If your diagram ends up overly complicated, prune it by eliminating objects that are not 
germane to the questions about the scenario you need answered. If your diagram is too 
simplistic, expand the neighbors of certain interesting objects and expose each object's 
state more deeply. 

Hints and Tips 
When you create object diagrams in the UML, remember that every object diagram is just a 
graphical representation of the static design view or static process view of a system. This means 
that no single object diagram need capture everything about a system's design or process view. 
In fact, for all but trivial systems, you'll encounter hundreds if not thousands of objects, most of 
them anonymous. So it's impossible to completely specify all the objects of a system or all the 
ways in which these objects may be associated. Consequently, object diagrams reflect some of 
the concrete or prototypical objects that live in the running system. 

A well-structured object diagram 

• Is focused on communicating one aspect of a system's static design view or static 
process view. 

• Represents one frame in the dynamic storyboard represented by an interaction diagram. 

• Contains only those elements that are essential to understanding that aspect. 

• Provides detail consistent with its level of abstraction; you should expose only those 
attribute values and other adornments that are essential to understanding. 

• Is not so minimalist as to misinform the reader about semantics that are important. 

When you draw an object diagram, 

• Give it a name that communicates its purpose. 

• Lay out its elements to minimize lines that cross. 

• Organize its elements spatially so that things that are semantically close are laid out to be 
physically close. 

• Use notes and color as visual cues to draw attention to important features of your 
diagram. 

• Include the values, state, and role of each object as necessary to communicate your 
intent. 



Part IV: Basic Behavioral Modeling 
 

 

Chapter 15. Interactions 
In this chapter 

• Roles, links, messages, actions, and sequences 

• Modeling flows of control 

• Creating well-structured algorithms 

In every interesting system, objects don't just sit idle; they interact with one another by passing 
messages. An interaction is a behavior that comprises a set of messages exchanged among a 
set of objects within a context to accomplish a purpose. 

You use interactions to model the dynamic aspect of collaborations, representing societies of 
objects playing specific roles, all working together to carry out some behavior that's bigger than 
the sum of the elements. These roles represent prototypical instances of classes, interfaces, 
components, nodes, and use cases. Their dynamic aspects are visualized, specified, constructed, 



and documented as flows of control that may encompass simple, sequential threads through a 
system, as well as more-complex flows that involve branching, looping, recursion, and 
concurrency. You can model each interaction in two ways: by emphasizing its time ordering of 
messages, or by emphasizing its sequencing of messages in the context of some structural 
organization of objects. 

Well-structured interactions are like well-structured algorithms• efficient, simple, adaptable, and 
understandable. 

Getting Started 
The differences between building a dog house and building a high rise are discussed in Chapter 
1. 

A building is a living thing. Although every building is constructed of static stuff, such as bricks, 
mortar, lumber, plastic, glass, and steel, those things work together dynamically to carry out 
behavior that is useful to those who use the building. Doors and windows open and close. Lights 
turn on and off. A building's furnace, air conditioner, thermostat, and ventilation ducts work 
together to regulate the building's temperature. In intelligent buildings, sensors detect the 
presence or absence of activity and adjust lighting, heating, cooling, and music as conditions 
change. Buildings are laid out to facilitate the flow of people and materials from place to place. 
More subtly, buildings are designed to adapt to changes in temperature, expanding and 
contracting during the day and night and across the seasons. All well-structured buildings are 
designed to react to dynamic forces, such as wind, earthquakes, and the movement of its 
occupants, in ways that keep the building in equilibrium. 

Software-intensive systems are the same way. An airline system might manage many terabytes 
of information that sit untouched on some disk most of the time, only to be brought to life by 
outside events, such as the booking of a reservation, the movement of an aircraft, or the 
scheduling of a flight. In reactive systems, such as those found on the computer in a microwave 
oven, objects spring to life and work gets carried out when the system is stimulated by such 
events as a user pushing a button or by the passage of time. 

Modeling the structural aspects of a system is discussed in Sections 2 and 3; you can also 
model the dynamic aspects of a system by using state machines, as discussed in Chapter 21; 
object diagrams are discussed in Chapter 14; interaction diagrams are discussed in Chapter 
18. 

In the UML, you model the static aspects of a system by using such elements as class diagrams 
and object diagrams. These diagrams let you visualize, specify, construct, and document the 
things that live in your system, including classes, interfaces, components, nodes, and use cases 
and their instances, together with the way those things sit in relationship to one another. 

In the UML, you model the dynamic aspects of a system by using interactions. Like an object 
diagram, an interaction statically sets the stage for its behavior by introducing all the objects that 
work together to carry out some action. Going beyond object diagrams, however, interactions 
also introduce messages that are dispatched from object to object. Most often, messages involve 
the invocation of an operation or the sending of a signal; messages may also encompass the 
creation and destruction of other objects. 

You use interactions to model the flow of control within an operation, a class, a component, a use 
case, or the system as a whole. Using interaction diagrams, you can reason about these flows in 
two ways. First, you can focus on how messages are dispatched across time. Second, you can 
focus on the structural relationships among the objects in an interaction and then consider how 
messages are passed within the context of that structure. 



The UML provides a graphical representation of messages, as Figure 15-1 shows. This notation 
permits you to visualize a message in a way that lets you emphasize its most important parts: its 
name, parameters (if any), and sequence. Graphically, a message is rendered as a directed line 
and almost always includes the name of its operation. 

Figure 15-1 Messages, Links, and Sequencing 

 

Terms and Concepts 
An interaction is a behavior that comprises a set of messages exchanged among a set of objects 
within a context to accomplish a purpose. A message is a specification of a communication 
between objects that conveys information with the expectation that activity will ensue. 

Context 

Object diagrams show the structural connection among objects, as discussed in Chapter 14; 
systems and subsystems are discussed in Chapter 31; collaborations are discussed in Chapter 
27. 

You may find an interaction wherever objects are linked to one another. You'll find interactions in 
the collaboration of objects that exist in the context of your system or subsystem. You will also 
find interactions in the context of an operation. Finally, you'll find interactions in the context of a 
class. 

Most often, you'll find interactions in the collaboration of objects that exist in the context of your 
system or subsystem as a whole. For example, in a system for Web commerce, you'll find objects 
on the client (such as instances of the classes BookOrder and OrderForm) interacting with one 
another. You'll also find objects on the client (again, such as instances of BookOrder) interacting 
with objects on the server (such as instances of BackOrderManager). These interactions 
therefore not only involve localized collaborations of objects (such as the interactions surrounding 
OrderForm), but they may also cut across many conceptual levels of your system (such as the 
interactions surrounding BackOrderManager). 

Operations are discussed in Chapters 4 and 9; modeling an operation is discussed in Chapters 
19 and 27. 

You'll also find interactions among objects in the implementation of an operation. The parameters 
of an operation, any variables local to the operation, and any objects global to the operation (but 
still visible to the operation) may interact with one another to carry out the algorithm of that 
operation's implementation. For example, invoking the operation moveToPosition(p : 
Position) defined for a class in a mobile robot will involve the interaction of a parameter (p), an 
object global to the operation (such as the object currentPosition), and possibly several local 



objects (such as local variables used by the operation to calculate intermediate points in a path to 
the new position). 

Classes are discussed in Chapters 4and 9. 

Finally, you will find interactions in the context of a class. You can use interactions to visualize, 
specify, construct, and document the semantics of a class. For example, to understand the 
meaning of a class RayTraceAgent, you might create interactions that show how the attributes 
of that class collaborate with one another (and with objects global to instances of the class and 
with parameters defined in the class's operations). 

Components are discussed in Chapter 25; nodes are discussed in Chapter 26; use cases are 
discussed in Chapter 16; modeling the realization of a use case is discussed in Chapter 27; 
classifiers are discussed in Chapter 9. 

Note 

An interaction may also be found in the representation of a component, node, or use 
case, each of which, in the UML, is really a kind of classifier. In the context of a use 
case, an interaction represents a scenario that, in turn, represents one thread through 
the action of the use case. 

 

Objects and Roles 

The objects that participate in an interaction are either concrete things or prototypical things. As a 
concrete thing, an object represents something in the real world. For example, p, an instance of 
the class Person, might denote a particular human. Alternately, as a prototypical thing, p might 
represent any instance of Person. 

Note 

This is what distinguishes a collaboration. In a collaboration, the objects you find are 
prototypical things that play particular roles, not specific objects in the real world. 

 

Abstract classes are discussed in Chapter 4; interfaces are discussed in Chapter 11. 

In the context of an interaction, you may find instances of classes, components, nodes, and use 
cases. Although abstract classes and interfaces, by definition, may not have any direct instances, 
you may find instances of these things in an interaction. Such instances do not represent direct 
instances of the abstract class or of the interface, but may represent, respectively, indirect (or 
prototypical) instances of any concrete children of the abstract class of some concrete class that 
realizes that interface. 

Instances are discussed in Chapter 13; object diagrams are discussed in Chapter 14. 

You can think of an object diagram as a representation of the static aspect of an interaction, 
setting the stage for the interaction by specifying all the objects that work together. An interaction 
goes further by introducing a dynamic sequence of messages that may pass along the links that 
connect these objects. 



Links 

Associations are discussed in Chapters 5 and 10. 

A link is a semantic connection among objects. In general, a link is an instance of an association. 
As Figure 15-2 shows, wherever a class has an association to another class, there may be a 
link between the instances of the two classes; wherever there is a link between two objects, one 
object can send a message to the other object. 

Figure 15-2 Links and Associations 

 
Stereotypes are discussed in Chapter 6; Appendix B summarizes the UML's standard 
elements; examples of these stereotypes are discussed in Chapter 18. 

A link specifies a path along which one object can dispatch a message to another (or the same) 
object. Most of the time, it is sufficient to specify that such a path exists. If you need to be more 
precise about how that path exists, you can adorn the appropriate end of the link with any of the 
following standard stereotypes. 

� 
association  

Specifies that the corresponding object is visible by association 

� self  Specifies that the corresponding object is visible because it is the dispatcher 
of the operation 

� global  Specifies that the corresponding object is visible because it is in an enclosing 
scope 

� local  Specifies that the corresponding object is visible because it is in a local scope 
� parameter  Specifies that the corresponding object is visible because it is a parameter 

Note 

As an instance of an association, a link may be rendered with most of the adornments 
appropriate to associations, such as a name, association role name, navigation, and 
aggregation. Multiplicity, however, does not apply to links, since they are instances of 
an association. 

 



Messages 

Object diagrams are discussed in Chapter 14. 

Suppose you have a set of objects and a set of links that connect those objects. If that's all you 
have, then you have a completely static model that can be represented by an object diagram. 
Object diagrams model the state of a society of objects at a given moment in time and are useful 
when you want to visualize, specify, construct, or document a static object structure. 

Operations are discussed in Chapters 4 and 9; events are discussed in Chapter 20; instances 
are discussed in Chapter 13. 

Suppose you want to model the changing state of a society of objects over a period of time. Think 
of it as taking a motion picture of a set of objects, each frame representing a successive moment 
in time. If these objects are not totally idle, you'll see objects passing messages to other objects, 
sending events, and invoking operations. In addition, at each frame, you can explicitly visualize 
the current state and role of individual instances. 

A message is the specification of a communication among objects that conveys information with 
the expectation that activity will ensue. The receipt of a message instance may be considered an 
instance of an event. 

When you pass a message, the action that results is an executable statement that forms an 
abstraction of a computational procedure. An action may result in a change in state. 

In the UML, you can model several kinds of actions. 

Operations are discussed in Chapters 4 and 9; signals are discussed in Chapter 20. 

� Call  Invokes an operation on an object; an object may send a message to itself, resulting in 
the local invocation of an operation 

� Return  Returns a value to the caller 
� Send  Sends a signal to an object 
� Create  Creates an object 
� 
Destroy  

Destroys an object; an object may commit suicide by destroying itself 

Note 

You can model complex actions in the UML, as well. In addition to the five basic kinds 
of actions listed above, you can attach an arbitrary string to a message, in which you 
can write complex expressions. The UML does not specify the syntax or semantics of 
such strings. 

 

Create and destroy are visualized as stereotypes, which are discussed in Chapter 6; the 
distinction between synchronous andasynchronousmessagesis most relevant in thecontext 
ofconcurrency, as discussed in Chapter 22. 

The UML provides a visual distinction among these kinds of messages, as Figure 15-3 shows. 

Figure 15-3 Messages 



 
Classes are discussed in Chapters 4 and 9. 

The most common kind of message you'll model is the call, in which one object invokes an 
operation of another (or the same) object. An object can't just call any random operation. If an 
object, such as c in the example above, calls the operation setItinerary on an instance of the 
class TicketAgent, the operation setItinerary must not only be defined for the class 
TicketAgent (that is, it must be declared in the class TicketAgent or one of its parents), it 
must also be visible to the caller c. 

Note 

Languages such as C++ are statically typed (although polymorphic), meaning that the 
legality of a call is checked at compilation time. Languages such as Smalltalk, 
however, are dynamically typed, meaning that you can't determine if an object can 
properly receive a message until execution time. In the UML, a well-formed model can 
in general be checked statically by a tool because, at modeling time, the developer 
typically knows the intent of the operation. 

 

Interfaces are discussed in Chapter 11. 

When an object calls an operation or sends a signal to another object, you can provide actual 
parameters to the message. Similarly, when an object returns control to another object, you can 
model the return value, as well. 

Note 

You can also qualify an operation by the class or interface in which it is declared. For 
example, invoking the operation register upon an instance of Student would 
polymorphically invoke whatever operation matches that name in the Student class 
hierarchy; invoking IMember::register would invoke the operation specified in the 



interface IMember (and realized by some suitable class, also in the Student class 
hierarchy). 

 

Sequencing 

Processes and threads are discussed in Chapter 22. 

When an object passes a message to another object (in effect, delegating some action to the 
receiver), the receiving object might in turn send a message to another object, which might send 
a message to yet a different object, and so on. This stream of messages forms a sequence. Any 
sequence must have a beginning; the start of every sequence is rooted in some process or 
thread. Furthermore, any sequence will continue as long as the process or thread that owns it 
lives. A nonstop system, such as you might find in real time device control, will continue to 
execute as long as the node it runs on is up. 

Systems are discussed in Chapter 31. 

Each process and thread within a system defines a distinct flow of control, and within each flow, 
messages are ordered in sequence by time. To better visualize the sequence of a message, you 
can explicitly model the order of the message relative to the start of the sequence by prefixing the 
message with a sequence number set apart by a colon separator. 

Most commonly, you can specify a procedural or nested flow of control, rendered using a filled 
solid arrowhead, as Figure 15-4 shows. In this case, the message findAtis specified as the 
first message nested in the second message of the sequence (2.1). 

Figure 15-4 Procedural Sequence 

 
Less common but also possible, as Figure 15-5 shows, you can specify a flat flow of control, 
rendered using a stick arrowhead, to model the nonprocedural progression of control from step to 
step. In this case, the message assertCall is specified as the second message in the 
sequence. 

Figure 15-5 Flat Sequence 



 
Note 

The distinction between flat and procedural sequences is subtle and is really an 
advanced modeling issue. Typically, you'll use flat sequences only when modeling 
interactions in the context of use cases that involve the system as a whole, together 
with actors outside the system. Such sequences are often flat because control simply 
progresses from step to step, without any consideration for nested flows of control. In 
just about all other circumstances, you'll want to use procedural sequences, because 
they represent ordinary, nested operation calls of the type you find in most 
programming languages. 

 

Processes and threads are discussed in Chapter 22; you can also specify asynchronous flow of 
control, rendered using a half stick arrowhead, as discussed in Chapter 22. 

When you are modeling interactions that involve multiple flows of control, it's especially important 
to identify the process or thread that sent a particular message. In the UML, you can distinguish 
one flow of control from another by prefixing a message's sequence number with the name of the 
process or thread that sits at the root of the sequence. For example, the expression 
       
        D5 : ejectHatch(3) 

specifies that the operation ejectHatch is dispatched (with the actual argument 3) as the fifth 
message in the sequence rooted by the process or thread named D. 

Not only can you show the actual arguments sent along with an operation or a signal in the 
context of an interaction, you can show the return values of a function as well. As the following 
expression shows, the value p is returned from the operation find, dispatched with the actual 
parameter "Rachelle". This is a nested sequence, dispatched as the second message nested 
in the third message nested in the first message of the sequence. In the same diagram, p can 
then be used as an actual parameter in other messages. 

Iteration,branching, andguardedmessages are discussed in Chapter 18; timing marks are 
discussed in Chapter 23; stereotypes andconstraints are discussed in Chapter 6. 
       
        1.3.2 : p := find("Rachelle") 

Note 

In the UML, you can also model more-complex forms of sequencing, such as iteration, 
branching, and guarded messages. In addition, to model timing constraints such as 
you might find in real time systems, you can associate timing marks with a sequence. 



Other, more exotic, forms of messaging, such as balking and time out, can be 
modeled by defining an appropriate message stereotype. 

 

Creation, Modification, and Destruction 

Constraints are discussed in Chapter 6. 

Most of the time, the objects you show participating in an interaction exist for the entire duration 
of the interaction. However, in some interactions, objects may be created (specified by a create 
message) and destroyed (specified by a destroy message). The same is true of links: the 
relationships among objects may come and go. To specify if an object or link enters and/or leaves 
during an interaction, you can attach one of the following constraints to the element: 

� new  Specifies that the instance or link is created during execution of the enclosing 
interaction 

� 
destroyed  

Specifies that the instance or link is destroyed prior to completion of execution of 
the enclosing interaction 

� 
transient  

Specifies that the instance or link is created during execution of the enclosing 
interaction but is destroyed before completion of execution 

Lifelines are discussed in Chapter 18; the become stereotype is discussed in Chapter 13. 

During an interaction, an object typically changes the values of its attributes, its state, or its roles. 
You can represent the modification of an object by replicating the object in the interaction (with 
possibly different attribute values, state, or roles). On a sequence diagram, you'd place each 
variant of the object on the same lifeline. In an interaction diagram, you'd connect each variant 
with a become message. 

Representation 

When you model an interaction, you typically include both objects (each one playing a specific 
role) and messages (each one representing the communication between objects, with some 
resulting action). 

Interaction diagrams are discussed in Chapter 18. 

You can visualize those objects and messages involved in an interaction in two ways: by 
emphasizing the time ordering of its messages, and by emphasizing the structural organization of 
the objects that send and receive messages. In the UML, the first kind of representation is called 
a sequence diagram; the second kind of representation is called a collaboration diagram. Both 
sequence diagrams and collaboration diagrams are kinds of interaction diagrams. 

Sequence diagrams and collaboration diagrams are largely isomorphic, meaning that you can 
take one and transform it into the other without loss of information. There are some visual 
differences, however. First, sequence diagrams permit you to model the lifeline of an object. An 
object's lifeline represents the existence of the object at a particular time, possibly covering the 
object's creation and destruction. Second, collaboration diagrams permit you to model the 
structural links that may exist among the objects in an interaction. 

Common Modeling Techniques 

Modeling a Flow of Control 



Use cases are discussed in Chapter 16; patterns and frameworks are discussed in Chapter 
28; classes and operations are discussed in Chapters 4 and 9; interfaces are discussed in 
Chapter 11; components are discussed in Chapter 25; nodes are discussed in Chapter 26; 
you can also model the dynamic aspects of a system by using state machines, as discussed in 
Chapter 21. 

The most common purpose for which you'll use interactions is to model the flow of control that 
characterizes the behavior of a system as a whole, including use cases, patterns, mechanisms, 
and frameworks, or the behavior of a class or an individual operation. Whereas classes, 
interfaces, components, nodes, and their relationships model the static aspects of your system, 
interactions model its dynamic aspects. 

When you model an interaction, you essentially build a storyboard of the actions that take place 
among a set of objects. Techniques such as CRC cards are particularly useful in helping you to 
discover and think about such interactions. 

To model a flow of control, 

• Set the context for the interaction, whether it is the system as a whole, a class, or an 
individual operation. 

• Set the stage for the interaction by identifying which objects play a role; set their initial 
properties, including their attribute values, state, and role. 

• If your model emphasizes the structural organization of these objects, identify the links 
that connect them, relevant to the paths of communication that take place in this 
interaction. Specify the nature of the links using the UML's standard stereotypes and 
constraints, as necessary. 

• In time order, specify the messages that pass from object to object. As necessary, 
distinguish the different kinds of messages; include parameters and return values to 
convey the necessary detail of this interaction. 

• Also to convey the necessary detail of this interaction, adorn each object at every 
moment in time with its state and role. 

Sequence diagrams are discussed in Chapter 18. 

For example, Figure 15-6 shows a set of objects that interact in the context of a publish and 
subscribe mechanism (an instance of the observer design pattern). This figure includes three 
objects: p (a StockQuotePublisher), s1, and s2 (both instances of 
StockQuoteSubscriber). This figure is an example of a sequence diagram, which emphasizes 
the time order of messages. 

Figure 15-6 Flow of Control by Time 



 
Collaboration diagrams are discussed in Chapter 18. 

Figure 15-7 is semantically equivalent to the previous one, but it is drawn as a collaboration 
diagram, which emphasizes the structural organization of the objects. This figure shows the same 
flow of control, but it also provides a visualization of the links among these objects. 

Figure 15-7 Flow of Control by Organization 

 

Hints and Tips 
When you model interactions in the UML, remember that every interaction represents the 
dynamic aspect of a society of objects. A well-structured interaction 

• Is simple and should encompass only those objects that work together to carry out some 
behavior bigger than the sum of all these elements. 

• Has a clear context and may represent the interaction of objects in the context of an 
operation, a class, or the system as a whole. 

• Is efficient and should carry out its behavior with an optimal balance of time and 
resources. 



• Is adaptable and elements of an interaction that are likely to change should be isolated 
so that they can be easily modified. 

• Is understandable and should be straightforward, involving no hacks, hidden side effects, 
or obscure semantics. 

When you draw an interaction in the UML 

• Choose an emphasis for the interaction. You can emphasize either the ordering of 
messages over time or the sequencing of messages in the context of some structural 
organization of objects. You can't do both at the same time. 

• Show only those properties of each object (such as attribute values, role, and state) that 
are important to understanding the interaction in its context. 

• Show only those properties of each message (such as its parameters, concurrency 
semantics, and return value) that are important to understanding the interaction in its 
context. 

Chapter 16. Use Cases 
In this chapter 

• Use cases, actors, include, and extend 

• Modeling the behavior of an element 

• Realizing use cases with collaborations 

No system exists in isolation. Every interesting system interacts with human or automated actors 
that use that system for some purpose, and those actors expect that system to behave in 
predictable ways. A use case specifies the behavior of a system or a part of a system and is a 
description of a set of sequences of actions, including variants, that a system performs to yield an 
observable result of value to an actor. 

You apply use cases to capture the intended behavior of the system you are developing, without 
having to specify how that behavior is implemented. Use cases provide a way for your developers 
to come to a common understanding with your system's end users and domain experts. In 
addition, use cases serve to help validate your architecture and to verify your system as it evolves 
during development. As you implement your system, these use cases are realized by 
collaborations whose elements work together to carry out each use case. 

Well-structured use cases denote essential system or subsystem behaviors only, and are neither 
overly general nor too specific. 

Getting Started 
A well-designed house is much more than a bunch of walls thrown together to hold up a roof that 
keeps out the weather. When you work with your architect to design your house, you'll give strong 
consideration to how you'll use that house. If you like entertaining, you'll want to think about the 
flow of people through your family room in a way that facilitates conversation and avoids dead 
ends that result in bunching. As you think about preparing meals for your family, you'll want to 
make sure your kitchen is designed for efficient placement of storage and appliances. Even 
plotting the path from your car to the kitchen in order to unload groceries will affect how you 
eventually connect rooms to one another. If you have a large family, you'll want to give thought to 
bathroom usage. Planning for the right number and right placement of bathrooms early on in the 



design will greatly reduce the risk of bottlenecks in the morning as your family heads to school 
and work. If you have teenagers, this issue has especially high risk, because the emotional cost 
of failure is high. 

Reasoning about how you and your family will use your house is an example of use case— based 
analysis. You consider the various ways in which you'll use the house, and these use cases drive 
the architecture. Many families will have the same kinds of use cases• you use houses to eat, 
sleep, raise children, and hold memories. Every family will also have its own special use cases or 
variations of these basic ones. The needs of a large family, for example, are different from the 
needs of a single adult just out of college. It's these variations that have the greatest impact on 
the shape of your final home. 

One key factor in creating use cases such as these is that you do so without specifying how the 
use cases are implemented. For example, you can specify how an ATM system should behave 
by stating in use cases how users interact with the system; you don't need to know anything 
about the inside of the ATM at all. Use cases specify desired behavior, they do not dictate how 
that behavior will be carried out. The great thing about this is that it lets you (as an end user and 
domain expert) communicate with your developers (who build systems that satisfy your 
requirements) without getting hung up on details. Those details will come, but use cases let you 
focus on the issues of highest risk to you. 

In the UML, all such behaviors are modeled as use cases that may be specified independent of 
their realization. A use case is a description of a set of sequences of actions, including variants, 
that a system performs to yield an observable result of value to an actor. There are a number of 
important parts to this definition. 

Interactions are discussed in Chapter 15; requirements are discussed in Chapter 6. 

A use case describes a set of sequences, in which each sequence represents the interaction of 
the things outside the system (its actors) with the system itself (and its key abstractions). These 
behaviors are in effect system-level functions that you use to visualize, specify, construct, and 
document the intended behavior of your system during requirements capture and analysis. A use 
case represents a functional requirement of your system as a whole. For example, one central 
use case of a bank is to process loans. 

A use case involves the interaction of actors and the system. An actor represents a coherent set 
of roles that users of use cases play when interacting with these use cases. Actors can be human 
or they can be automated systems. For example, in modeling a bank, processing a loan involves, 
among other things, the interaction between a customer and a loan officer. 

A use case may have variants. In all interesting systems, you'll find use cases that are 
specialized versions of other use cases, use cases that are included as parts of other use cases, 
and use cases that extend the behavior of other core use cases. You can factor the common, 
reusable behavior of a set of use cases by organizing them according to these three kinds of 
relationships. For example, in modeling a bank, you'll find many variations among the basic use 
case of processing a loan, such as the difference in processing a jumbo mortgage versus a small 
business loan. In each case, however, these use cases share some degree of common behavior, 
such as the use case of qualifying the customer for the loan, a behavior that is part of processing 
every kind of loan. 

A use case carries out some tangible amount of work. From the perspective of a given actor, a 
use case does something that's of value to an actor, such as calculate a result, generate a new 
object, or change the state of another object. For example, in modeling a bank, processing a loan 
results in the delivery of an approved loan, manifest in a pile of money handed to the customer. 

Subsystems are discussed in Chapter 31; classes are discussed in Chapters 4 and 9; 
interfaces are discussed in Chapter 11. 



You can apply use cases to your whole system. You can also apply use cases to part of your 
system, including subsystems and even individual classes and interfaces. In each case, these 
use cases not only represent the desired behavior of these elements, but they can also be used 
as the basis of test cases for these elements as they evolve during development. Use cases 
applied to subsystems are excellent sources of regression tests; use cases applied to the whole 
system are excellent sources of integration and system tests. The UML provides a graphical 
representation of a use case and an actor, as Figure 16-1 shows. This notation permits you to 
visualize a use case apart from its realization and in context with other use cases. 

Figure 16-1 Actors and Use Cases 

 

Terms and Concepts 
The notation for use cases is similar to that for collaborations, as discussed in Chapter 27. 

A use case is a description of a set of sequences of actions, including variants, that a system 
performs to yield an observable result of value to an actor. Graphically, a use case is rendered as 
an ellipse. 

Names 

A use case name must be unique within its enclosing package, as discussed in Chapter 12. 

Every use case must have a name that distinguishes it from other use cases. A name is a textual 
string. That name alone is known as a simple name; a path name is the use case name prefixed 
by the name of the package in which that use case lives. A use case is typically drawn showing 
only its name, as in Figure 16-2. 

Figure 16-2 Simple and Path Names 



 
Note 

A use case name may be text consisting of any number of letters, numbers, and most 
punctuation marks (except for marks such as the colon, which is used to separate a 
class name and the name of its enclosing package) and may continue over several 
lines. In practice, use case names are short active verb phrases naming some 
behavior found in the vocabulary of the system you are modeling. 

 

Use Cases and Actors 

An actor represents a coherent set of roles that users of use cases play when interacting with 
these use cases. Typically, an actor represents a role that a human, a hardware device, or even 
another system plays with a system. For example, if you work for a bank, you might be a 
LoanOfficer. If you do your personal banking there, as well, you'll also play the role of 
Customer. An instance of an actor, therefore, represents an individual interacting with the 
system in a specific way. Although you'll use actors in your models, actors are not actually part of 
the system. They live outside the system. 

Generalization is discussed in Chapters 5 and 10. 

As Figure 16-3 indicates, actors are rendered as stick figures. You can define general kinds of 
actors (such as Customer) and specialize them (such as CommercialCustomer) using 
generalization relationships. 

Figure 16-3 Actors 



 
Stereotypes are discussed in Chapter 6. 

Note 

You can use the UML's extensibility mechanisms to stereotype an actor in order to 
provide a different icon that might offer a better visual cue for your purposes. 

 

Association relationships are discussed in Chapters 5and 10; messages are discussed in 
Chapter 15. 

Actors may be connected to use cases only by association. An association between an actor and 
a use case indicates that the actor and the use case communicate with one another, each one 
possibly sending and receiving messages. 

Use Cases and Flow of Events 

A use case describes what a system (or a subsystem, class, or interface) does but it does not 
specify how it does it. When you model, it's important that you keep clear the separation of 
concerns between this outside and inside view. 

You can specify the behavior of a use case by describing a flow of events in text clearly enough 
for an outsider to understand it easily. When you write this flow of events, you should include how 
and when the use case starts and ends, when the use case interacts with the actors and what 
objects are exchanged, and the basic flow and alternative flows of the behavior. 

For example, in the context of an ATM system, you might describe the use case ValidateUser 
in the following way: 



Main flow of events:   

The use case starts when the system prompts the Customer for a PIN number. 
The Customer can now enter a PIN number via the keypad. The Customer 
commits the entry by pressing the Enter button. The system then checks this PIN 
number to see if it is valid. If the PIN number is valid, the system acknowledges 
the entry, thus ending the use case. 

Exceptional flow of events:   

The Customer can cancel a transaction at any time by pressing the Cancel 
button, thus restarting the use case. No changes are made to the Customer's 
account. 

Exceptional flow of events:   

The Customer can clear a PIN number anytime before committing it and reenter 
a new PIN number. 

Exceptional flow of events:   

If the Customer enters an invalid PIN number, the use case restarts. If this 
happens three times in a row, the system cancels the entire transaction, 
preventing the Customer from interacting with the ATM for 60 seconds. 

Note 

You can specify a use case's flow of events in a number of ways, including informal 
structured text (as in the example above), formal structured text (with pre- and 
postconditions), and pseudocode. 

 

Use Cases and Scenarios 

Interaction diagrams, including sequence diagrams and collaboration diagrams, are discussed in 
Chapter 18. 

Typically, you'll first describe the flow of events for a use case in text. As you refine your 
understanding of your system's requirements, however, you'll want to also use interaction 
diagrams to specify these flows graphically. Typically, you'll use one sequence diagram to specify 
a use case's main flow, and variations of that diagram to specify a use case's exceptional flows. 

It is desirable to separate main versus alternative flows because a use case describes a set of 
sequences, not just a single sequence, and it would be impossible to express all the details of an 
interesting use case in just one sequence. For example, in a human resources system, you might 
find the use case Hire employee. This general business function might have many possible 
variations. You might hire a person from another company (the most common scenario); you 
might transfer a person from one division to another (common in international companies); or you 
might hire a foreign national (which involves its own special rules). Each of these variants can be 
expressed in a different sequence. 

Instances are discussed in Chapter 13. 

This one use case (Hire employee) actually describes a set of sequences in which each 
sequence in the set represents one possible flow through all these variations. Each sequence is 



called a scenario. A scenario is a specific sequence of actions that illustrates behavior. Scenarios 
are to use cases as instances are to classes, meaning that a scenario is basically one instance of 
a use case. 

Note 

There's an expansion factor from use cases to scenarios. A modestly complex system 
might have a few dozen use cases that capture its behavior, and each use case might 
expand out to several dozen scenarios. For each use case, you'll find primary 
scenarios (which define essential sequences) and secondary scenarios (which define 
alternative sequences). 

 

Use Cases and Collaborations 

Collaborations are discussed in Chapter 27. 

A use case captures the intended behavior of the system (or subsystem, class, or interface) you 
are developing, without having to specify how that behavior is implemented. That's an important 
separation because the analysis of a system (which specifies behavior) should, as much as 
possible, not be influenced by implementation issues (which specify how that behavior is to be 
carried out). Ultimately, however, you have to implement your use cases, and you do so by 
creating a society of classes and other elements that work together to implement the behavior of 
this use case. This society of elements, including both its static and dynamic structure, is 
modeled in the UML as a collaboration. 

Realization is discussed in Chapters 9 and 10. 

As Figure 16-4 shows, you can explicitly specify the realization of a use case by a collaboration. 
Most of the time, though, a given use case is realized by exactly one collaboration, so you will not 
need to model this relationship explicitly. 

Figure 16-4 Use Cases and Collaborations 

 
Note 

Although you may not visualize this relationship explicitly, the tools you use to manage 
your models will likely maintain this relationship. 

 

Architecture is discussed in Chapter 2. 



Note 

Finding the minimal set of well-structured collaborations that satisfy the flow of events 
specified in all the use cases of a system is the focus of a system's architecture. 

 

Organizing Use Cases 

Packages are discussed in Chapter 12. 

You can organize use cases by grouping them in packages in the same manner in which you can 
organize classes. 

You can also organize use cases by specifying generalization, include, and extend relationships 
among them. You apply these relationships in order to factor common behavior (by pulling such 
behavior from other use cases that it includes) and in order to factor variants (by pushing such 
behavior into other use cases that extend it). 

Generalization is discussed in Chapters 5 and 10. 

Generalization among use cases is just like generalization among classes. Here it means that the 
child use case inherits the behavior and meaning of the parent use case; the child may add to or 
override the behavior of its parent; and the child may be substituted any place the parent appears 
(both the parent and the child may have concrete instances). For example, in a banking system, 
you might have the use case Validate User, which is responsible for verifying the identify of 
the user. You might then have two specialized children of this use case (Check password and 
Retinal scan), both of which behave just like Validate User and may be applied anywhere 
Validate User appears, yet both of which add their own behavior (the former by checking a 
textual password, the latter by checking the unique retina patterns of the user). As shown in 
Figure 16-5, generalization among use cases is rendered as a solid directed line with a large 
open arrowhead, just like generalization among classes. 

Figure 16-5 Generalization, Include, and Extend 



 
An include relationship between use cases means that the base use case explicitly incorporates 
the behavior of another use case at a location specified in the base. The included use case never 
stands alone, but is only instantiated as part of some larger base that includes it. You can think of 
include as the base use case pulling behavior from the supplier use case. 

You use an include relationship to avoid describing the same flow of events several times, by 
putting the common behavior in a use case of its own (the use case that is included by a base 
use case). The include relationship is essentially an example of delegation• you take a set of 
responsibilities of the system and capture it in one place (the included use case), then let all other 
parts of the system (other use cases) include the new aggregation of responsibilities whenever 
they need to use that functionality. 

Dependency relationships are discussed in Chapters 5and10;stereotypes are discussed in 
Chapter 6. 

You render an include relationship as a dependency, stereotyped as include. To specify the 
location in a flow of events in which the base use case includes the behavior of another, you 
simply write include followed by the name of the use case you want to include, as in the 
following flow for Track order. 

Main flow of events:   

Obtain and verify the order number. include (Validate user). For each part 
in the order, query its status, then report back to the user. 

An extend relationship between use cases means that the base use case implicitly incorporates 
the behavior of another use case at a location specified indirectly by the extending use case. The 
base use case may stand alone, but under certain conditions, its behavior may be extended by 
the behavior of another use case. This base use case may be extended only at certain points 
called, not surprisingly, its extension points. You can think of extend as the extension use case 
pushing behavior to the base use case. 



You use an extend relationship to model the part of a use case the user may see as optional 
system behavior. In this way, you separate optional behavior from mandatory behavior. You may 
also use an extend relationship to model a separate subflow that is executed only under given 
conditions. Finally, you may use an extend relationship to model several flows that may be 
inserted at a certain point, governed by explicit interaction with an actor. 

Dependency relationships are discussed in Chapters 5and10; stereotypes and extra 
compartments are discussed in Chapter 6. 

You render an extend relationship as a dependency, stereotyped as extend. You may list the 
extension points of the base use case in an extra compartment. These extension points are just 
labels that may appear in the flow of the base use case. For example, the flow for Place order 
might read as follows: 

Main flow of events:   

include (Validate user). Collect the user's order items. (set priority). 
Submit the order for processing. 

In this example, set priority is an extension point. A use case may have more than one 
extension point (which may appear more than once), and these are always matched by name. 
Under normal circumstances, this base use case will execute without regard for the priority of the 
order. If, on the other hand, this is an instance of a priority order, the flow for this base case will 
carry out as above. But at the extension point (set priority), the behavior of the extending 
use case (Place rush order) will be performed, then the flow will resume. If there are multiple 
extension points, the extending use case will simply fold in its flows in order. 

Note 

Organizing your use cases by extracting common behavior (through include 
relationships) and distinguishing variants (through extend relationships) is an important 
part of creating a simple, balanced, and understandable set of use cases for your 
system. 

 

Other Features 

Attributes and operations are discussed in Chapter 4. 

Use cases are classifiers, so they may have attributes and operations that you may render just as 
for classes. You can think of these attributes as the objects inside the use case that you need to 
describe its outside behavior. Similarly, you can think of these operations as the actions of the 
system you need to describe a flow of events. These objects and operations may be used in your 
interaction diagrams to specify the behavior of the use case. 

State machines are discussed in Chapter 21. 

As classifiers, you can also attach state machines to use cases. You can use state machines as 
yet another way to describe the behavior represented by a use case. 

Common Modeling Techniques 

Modeling the Behavior of an Element 



Systems and subsystems are discussed in Chapter 31; classes are discussed in Chapters 4 
and 9. 

The most common thing for which you'll apply use cases is to model the behavior of an element, 
whether it is the system as a whole, a subsystem, or a class. When you model the behavior of 
these things, it's important that you focus on what that element does, not how it does it. 

Applying use cases to elements in this way is important for three reasons. First, by modeling the 
behavior of an element with use cases, you provide a way for domain experts to specify its 
outside view to a degree sufficient for developers to construct its inside view. Use cases provide a 
forum for your domain experts, end users, and developers to communicate to one another. 
Second, use cases provide a way for developers to approach an element and understand it. A 
system, subsystem, or class may be complex and full of operations and other parts. By specifying 
an element's use cases, you help users of these elements to approach them in a direct way, 
according to how they are likely to use them. In the absence of such use cases, users have to 
discover on their own how to use those elements. Use cases let the author of an element 
communicate his or her intent about how that element should be used. Third, use cases serve as 
the basis for testing each element as it evolves during development. By continuously testing each 
element against its use cases, you continuously validate its implementation. Not only do these 
use cases provide a source of regression tests, but every time you throw a new use case at an 
element, you are forced to reconsider your implementation to ensure that this element is resilient 
to change. If it is not, you must fix your architecture appropriately. 

To model the behavior of an element, 

• Identify the actors that interact with the element. Candidate actors include groups that 
require certain behavior to perform their tasks or that are needed directly or indirectly to 
perform the element's functions. 

• Organize actors by identifying general and more specialized roles. 

• For each actor, consider the primary ways in which that actor interacts with the element. 
Consider also interactions that change the state of the element or its environment or that 
involve a response to some event. 

• Consider also the exceptional ways in which each actor interacts with the element. 

• Organize these behaviors as use cases, applying include and extend relationships to 
factor common behavior and distinguish exceptional behavior. 

For example, a retail system will interact with customers who place and track orders. In turn, the 
system will ship orders and bill the customer. As Figure 16-6 shows, you can model the 
behavior of such a system by declaring these behaviors as use cases (Place order, Track 
order, Ship order, and Bill customer). Common behavior can be factored out (Validate 
customer) and variants (Ship partial order) can be distinguished, as well. For each of 
these use cases, you would include a specification of the behavior, either by text, state machine, 
or interactions. 

Figure 16-6 Modeling the Behavior of an Element 



 
Packages are discussed in Chapter 12. 

As your models get bigger, you will find that many use cases tend to cluster together in groups 
that are conceptually and semantically related. In the UML, you can use packages to model these 
clusters of classes. 

Hints and Tips 
When you model use cases in the UML, every use case should represent some distinct and 
identifiable behavior of the system or part of the system. A well-structured use case 

• Names a single, identifiable, and reasonably atomic behavior of the system or part of the 
system. 

• Factors common behavior by pulling such behavior from other use cases that it includes. 

• Factors variants by pushing such behavior into other use cases that extend it. 

• Describes the flow of events clearly enough for an outsider to easily understand it. 

• Is described by a minimal set of scenarios that specify the normal and variant semantics 
of the use case. 

When you draw a use case in the UML, 

• Show only those use cases that are important to understand the behavior of the system 
or the part of the system in its context. 

• Show only those actors that relate to these use cases. 

Chapter 17. Use Case Diagrams 



In this chapter 

• Modeling the context of a system 

• Modeling the requirements of a system 

• Forward and reverse engineering 

Activity diagrams are discussed in Chapter 19; statechart diagrams are discussed in Chapter 
24; sequence and collaboration diagrams are discussed in Chapter 18. 

Use case diagrams are one of the five diagrams in the UML for modeling the dynamic aspects of 
systems (activity diagrams, statechart diagrams, sequence diagrams, and collaboration diagrams 
are four other kinds of diagrams in the UML for modeling the dynamic aspects of systems). Use 
case diagrams are central to modeling the behavior of a system, a subsystem, or a class. Each 
one shows a set of use cases and actors and their relationships. 

You apply use case diagrams to model the use case view of a system. For the most part, this 
involves modeling the context of a system, subsystem, or class, or modeling the requirements of 
the behavior of these elements. 

Use case diagrams are important for visualizing, specifying, and documenting the behavior of an 
element. They make systems, subsystems, and classes approachable and understandable by 
presenting an outside view of how those elements may be used in context. Use case diagrams 
are also important for testing executable systems through forward engineering and for 
comprehending executable systems through reverse engineering. 

Getting Started 
Suppose someone hands you a box. On one side of that box, there are some buttons and a small 
LCD panel. Other than that, the box is nondescript; you aren't even given a hint about how to use 
it. You could randomly punch buttons and see what happens, but you'd be hard pressed to figure 
out what that box does or how to use it properly unless you spent a lot of trial-and-error time. 

Software-intensive systems can be like that. If you are a user, you might be handed an 
application and told to use it. If the application follows normal conventions of the operating system 
you are used to, you might be able to get it to do something useful after a fashion, but you'd 
never come to understand its more complex and subtle behavior that way. Similarly, if you are a 
developer, you might be handed a legacy application or a set of components and told to use 
them. You'd be hard pressed to know how to use the elements until you formed a conceptual 
model for their use. 

With the UML, you apply use case diagrams to visualize the behavior of a system, subsystem, or 
class so that users can comprehend how to use that element, and so that developers can 
implement that element. As Figure 17-1 shows, you can provide a use case diagram to model 
the behavior of that box• which most people would call a cellular phone. 

Figure 17-1 A Use Case Diagram 



 

Terms and Concepts 
A use case diagram is a diagram that shows a set of use cases and actors and their 
relationships. 

Common Properties 

The general properties of diagrams are discussed in Chapter 7. 

A use case diagram is just a special kind of diagram and shares the same common properties as 
do all other diagrams• a name and graphical contents that are a projection into a model. What 
distinguishes a use case diagram from all other kinds of diagrams is its particular content. 

Contents 

Use cases and actors are discussed in Chapter 16; relationships are discussed in Chapters 5 
and 10; packages are discussed in Chapter 12; instances are discussed in Chapter 13. 

Use case diagrams commonly contain 

• Use cases 

• Actors 

• Dependency, generalization, and association relationships 

Like all other diagrams, use case diagrams may contain notes and constraints. 

Use case diagrams may also contain packages, which are used to group elements of your model 
into larger chunks. Occasionally, you'll want to place instances of use cases in your diagrams, as 
well, especially when you want to visualize a specific executing system. 

Common Uses 

Use case views are discussed in Chapter 2. 



You apply use case diagrams to model the static use case view of a system. This view primarily 
supports the behavior of a system• the outwardly visible services that the system provides in the 
context of its environment. 

When you model the static use case view of a system, you'll typically apply use case diagrams in 
one of two ways. 

1. To model the context of a system 

Modeling the context of a system involves drawing a line around the whole system and asserting 
which actors lie outside the system and interact with it.Here, you'll apply use case diagrams to 
specify the actors and the meaning of their roles. 

Requirements are discussed in Chapters 4 and 6. 

2. To model the requirements of a system 

Modeling the requirements of a system involves specifying what that system should do (from a 
point of view of outside the system), independent of how that system should do it. Here, you'll 
apply use case diagrams to specify the desired behavior of the system. In this manner, a use 
case diagram lets you view the whole system as a black box; you can see what's outside the 
system and you can see how that system reacts to the things outside, but you can't see how that 
system works on the inside. 

Common Modeling Techniques 

Modeling the Context of a System 

Given a system• any system• some things will live inside the system, some things will live 
outside it. For example, in a credit card validation system, you'll find such things as accounts, 
transactions, and fraud detection agents inside the system. Similarly, you'll find such things as 
credit card customers and retail institutions outside the system. The things that live inside the 
system are responsible for carrying out the behavior that those on the outside expect the system 
to provide. All those things on the outside that interact with the system constitute the system's 
context. This context defines the environment in which that system lives. 

Systems are discussed in Chapter 31. 

In the UML, you can model the context of a system with a use case diagram, emphasizing the 
actors that surround the system. Deciding what to include as an actor is important because in 
doing so you specify a class of things that interact with the system. Deciding what not to include 
as an actor is equally, if not more, important because that constrains the system's environment to 
include only those actors that are necessary in the life of the system. 

To model the context of a system, 

• Identify the actors that surround the system by considering which groups require help 
from the system to perform their tasks; which groups are needed to execute the system's 
functions; which groups interact with external hardware or other software systems; and 
which groups perform secondary functions for administration and maintenance. 

• Organize actors that are similar to one another in a generalization/specialization 
hierarchy. 

• Where it aids understandability, provide a stereotype for each such actor. 



• Populate a use case diagram with these actors and specify the paths of communication 
from each actor to the system's use cases. 

For example, Figure 17-2 shows the context of a credit card validation system, with an 
emphasis on the actors that surround the system. You'll find Customers, of which there are two 
kinds (Individual customer and Corporate customer). These actors are the roles that 
humans play when interacting with the system. In this context, there are also actors that 
represent other institutions, such as Retail institution (with which a Customer performs a 
card transaction to buy an item or a service) and Sponsoring financial institution 
(which serves as the clearinghouse for the credit card account). In the real world, these latter two 
actors are likely software-intensive systems themselves. 

Figure 17-2 Modeling the Context of a System 

 
Subsystems are discussed in Chapter 31. 

This same technique applies to modeling the context of a subsystem. A system at one level of 
abstraction is often a subsystem of a larger system at a higher level of abstraction. Modeling the 
context of a subsystem is therefore useful when you are building systems of interconnected 
systems. 

Modeling the Requirements of a System 

A requirement is a design feature, property, or behavior of a system. When you state a system's 
requirements, you are asserting a contract, established between those things that lie outside the 
system and the system itself, which declares what you expect that system to do. For the most 
part, you don't care how the system does it, you just care that it does it. A well-behaved system 
will carry out all its requirements faithfully, predictably, and reliably. When you build a system, it's 
important to start with agreement about what that system should do, although you will certainly 
evolve your understanding of those requirements as you iteratively and incrementally implement 



the system. Similarly, when you are handed a system to use, knowing how it behaves is essential 
to using it properly. 

Notes can be used to state requirements, as discussed in Chapter 6. 

Requirements can be expressed in various forms, from unstructured text to expressions in a 
formal language, and everything in between. Most, if not all, of a system's functional requirements 
can be expressed as use cases, and the UML's use case diagrams are essential for managing 
these requirements. 

To model the requirements of a system, 

• Establish the context of the system by identifying the actors that surround it. 

• For each actor, consider the behavior that each expects or requires the system to 
provide. 

• Name these common behaviors as use cases. 

• Factor common behavior into new use cases that are used by others; factor variant 
behavior into new use cases that extend more main line flows. 

• Model these use cases, actors, and their relationships in a use case diagram. 

• Adorn these use cases with notes that assert nonfunctional requirements; you may have 
to attach some of these to the whole system. 

Modelingdynamics forload balancing andnetwork reconfiguration are discussed in Chapter 23. 

Figure 17-3 expands on the previous use case diagram. Although it elides the relationships 
among the actors and the use cases, it adds additional use cases that are somewhat invisible to 
the average customer, yet are essential behaviors of the system. This diagram is valuable 
because it offers a common starting place for end users, domain experts, and developers to 
visualize, specify, construct, and document their decisions about the functional requirements of 
this system. For example, Detect card fraud is a behavior important to both the Retail 
institution and the Sponsoring financial institution. Similarly, Report on 
account status is another behavior required of the system by the various institutions in its 
context. 

Figure 17-3 Modeling the Requirements of a System 



 
The requirement modeled by the use case Manage network outage is a bit different from all 
the others because it represents a secondary behavior of the system necessary for its reliable 
and continuous operation. 

Subsystems are discussed in Chapter 31. 

This same technique applies to modeling the requirements of a subsystem. 

Forward and Reverse Engineering 

Diagrams are discussed in Chapter 7; use cases are discussed in Chapter 16. 

Most of the UML's other diagrams, including class, component, and statechart diagrams, are 
clear candidates for forward and reverse engineering because each has an analog in the 
executable system. Use case diagrams are a bit different in that they reflect rather than specify 
the implementation of a system, subsystem, or class. Use cases describe how an element 
behaves, not how that behavior is implemented, so it cannot be directly forward or reverse 
engineered. 

Forward engineering is the process of transforming a model into code through a mapping to an 
implementation language. A use case diagram can be forward engineered to form tests for the 
element to which it applies. Each use case in a use case diagram specifies a flow of events (and 
variants of those flows), and these flows specify how the element is expected to behave• that's 
something worthy of testing. A well-structured use case will even specify pre- and postconditions 
that can be used to define a test's initial state and its success criteria. For each use case in a use 
case diagram, you can create a test case that you can run every time you release a new version 
of that element, thereby confirming that it works as required before other elements rely on it. 

To forward engineer a use case diagram, 



• For each use case in the diagram, identify its flow of events and its exceptional flow of 
events. 

• Depending on how deeply you choose to test, generate a test script for each flow, using 
the flow's preconditions as the test's initial state and its postconditions as its success 
criteria. 

• As necessary, generate test scaffolding to represent each actor that interacts with the 
use case. Actors that push information to the element or are acted on by the element 
may either be simulated or substituted by its real-world equivalent. 

• Use tools to run these tests each time you release the element to which the use case 
diagram applies. 

Reverse engineering is the process of transforming code into a model through a mapping from a 
specific implementation language. Automatically reverse engineering a use case diagram is pretty 
much beyond the state of the art, simply because there is a loss of information when moving from 
a specification of how an element behaves to how it is implemented. However, you can study an 
existing system and discern its intended behavior by hand, which you can then put in the form of 
a use case diagram. Indeed, this is pretty much what you have to do anytime you are handed an 
undocumented body of software. The UML's use case diagrams simply give you a standard and 
expressive language in which to state what you discover. 

To reverse engineer a use case diagram, 

• Identify each actor that interacts with the system. 

• For each actor, consider the manner in which that actor interacts with the system, 
changes the state of the system or its environment, or responds to some event. 

• Trace the flow of events in the executable system relative to each actor. Start with 
primary flows and only later consider alternative paths. 

• Cluster related flows by declaring a corresponding use case. Consider modeling variants 
using extend relationships, and consider modeling common flows by applying include 
relationships. 

• Render these actors and use cases in a use case diagram, and establish their 
relationships. 

Hints and Tips 
When you create use case diagrams in the UML, remember that every use case diagram is just a 
graphical presentation of the static use case view of a system. This means that no single use 
case diagram need capture everything about a system's use case view. Collectively, all the use 
case diagrams of a system represent the system's complete static use case view; individually, 
each represents just one aspect. 

A well-structured use case diagram 

• Is focused on communicating one aspect of a system's static use case view. 

• Contains only those use cases and actors that are essential to understanding that aspect. 

• Provides detail consistent with its level of abstraction; you should expose only those 
adornments (such as extension points) that are essential to understanding. 



• Is not so minimalist as to misinform the reader about semantics that are important. 

When you draw a use case diagram, 

• Give it a name that communicates its purpose. 

• Lay out its elements to minimize lines that cross. 

• Organize its elements spatially so that behaviors and roles that are semantically close 
are laid out physically close. 

• Use notes and color as visual cues to draw attention to important features of your 
diagram. 

• Try not to show too many kinds of relationships. In general, if you have complicated 
include and extend relationships, take these elements to another diagram. 

Chapter 18. Interaction Diagrams 
In this chapter 

• Modeling flows of control by time ordering 

• Modeling flows of control by organization 

• Forward and reverse engineering 

Activity diagrams, statechart diagrams, and use case diagrams are three other kinds of diagrams 
used in the UML for modeling the dynamic aspects of systems; activity diagrams are discussed in 
Chapter 19; statechart diagrams are discussed in Chapter 24; use case diagrams are 
discussed in Chapter 17. 

Sequence diagrams and collaboration diagrams• both of which are called interaction diagrams•
are two of the five diagrams used in the UML for modeling the dynamic aspects of systems. An 
interaction diagram shows an interaction, consisting of a set of objects and their relationships, 
including the messages that may be dispatched among them. A sequence diagram is an 
interaction diagram that emphasizes the time ordering of messages; a collaboration diagram is an 
interaction diagram that emphasizes the structural organization of the objects that send and 
receive messages. 

You use interaction diagrams to model the dynamic aspects of a system. For the most part, this 
involves modeling concrete or prototypical instances of classes, interfaces, components, and 
nodes, along with the messages that are dispatched among them, all in the context of a scenario 
that illustrates a behavior. Interaction diagrams may stand alone to visualize, specify, construct, 
and document the dynamics of a particular society of objects, or they may be used to model one 
particular flow of control of a use case. 

Interaction diagrams are not only important for modeling the dynamic aspects of a system, but 
also for constructing executable systems through forward and reverse engineering. 

Getting Started 
When you watch a movie projected from film or broadcast on television, your mind actually plays 
tricks on you. Instead of seeing continuous motion as you would in live action, you really see a 
series of static images played back to you fast enough to give the illusion of continuous motion. 



When directors and animators plan a film, they use the same technique but at lower fidelity. By 
storyboarding key frames, they build up a model of each scene, sufficient in detail to 
communicate the intent to all the stakeholders on the production team. In fact, creating this 
storyboard is a major activity in the production process, helping the team visualize, specify, 
construct, and document a model of the movie as it evolves from inception through construction 
and finally deployment. 

Modeling the structural aspects of a system is discussed in Sections 2 and 3. 

In modeling software-intensive systems, you have a similar problem: how do you model its 
dynamic aspects? Imagine, for a moment, how you might visualize a running system. If you have 
an interactive debugger attached to the system, you might be able to watch a section of memory 
and observe how it changes its contents over time. With a bit more focus, you might even monitor 
several objects of interest. Over time, you'd see the creation of some objects, changes in the 
value of their attributes, and then the destruction of some of them. 

The value of visualizing the dynamic aspects of a system this way is quite limited, especially if 
you are talking about a distributed system with multiple concurrent flows of control. You might as 
well try to understand the human circulatory system by looking at the blood that passes through 
one point in one artery over time. A better way to model the dynamic aspects of a system is by 
building up storyboards of scenarios, involving the interaction of certain interesting objects and 
the messages that may be dispatched among them. 

In the UML, you model these storyboards by using interaction diagrams. As Figure 18-1 shows, 
you can build up these storyboards in two ways: by emphasizing the time ordering of messages 
and by emphasizing the structural relationships among the objects that interact. Either way, the 
diagrams are semantically equivalent; you can convert one to the other without loss of 
information. 

Figure 18-1 Interaction Diagrams 



 

Terms and Concepts 
An interaction diagram shows an interaction, consisting of a set of objects and their relationships, 
including the messages that may be dispatched among them. A sequence diagram is an 
interaction diagram that emphasizes the time ordering of messages. Graphically, a sequence 
diagram is a table that shows objects arranged along the X axis and messages, ordered in 
increasing time, along the Y axis. A collaboration diagram is an interaction diagram that 
emphasizes the structural organization of the objects that send and receive messages. 
Graphically, a collaboration diagram is a collection of vertices and arcs. 

Common Properties 

The general properties of diagrams are discussed in Chapter 7. 

An interaction diagram is just a special kind of diagram and shares the same common properties 
as do all other diagrams• a name and graphical contents that are a projection into a model. What 
distinguishes an interaction diagram from all other kinds of diagrams is its particular content. 

Contents 

Objects are discussed in Chapter 13; links are discussed in Chapters 14 and 15; messages 
are discussed in Chapter 15; interactions are discussed in Chapter 15. 



Interaction diagrams commonly contain 

• Objects 

• Links 

• Messages 

Note 

An interaction diagram is basically a projection of the elements found in an interaction. 
The semantics of an interaction's context, objects and roles, links, messages, and 
sequencing apply to interaction diagrams. 

 
Like all other diagrams, interaction diagrams may contain notes and constraints. 

Sequence Diagrams 

A sequence diagram emphasizes the time ordering of messages. As Figure 18-2 shows, you 
form a sequence diagram by first placing the objects that participate in the interaction at the top of 
your diagram, across the X axis. Typically, you place the object that initiates the interaction at the 
left, and increasingly more subordinate objects to the right. Next, you place the messages that 
these objects send and receive along the Y axis, in order of increasing time from top to bottom. 
This gives the reader a clear visual cue to the flow of control over time. 

Figure 18-2 Sequence Diagram 

 
Sequence diagrams have two features that distinguish them from collaboration diagrams. 



You can specify the vitality of an object or a link by marking it with a newdestroyed, or 
transient constraint, as discussed in Chapter 15; representing the changing values, state, 
and roles of an object is discussed in Chapter 13. 

First, there is the object lifeline. An object lifeline is the vertical dashed line that represents the 
existence of an object over a period of time. Most objects that appear in an interaction diagram 
will be in existence for the duration of the interaction, so these objects are all aligned at the top of 
the diagram, with their lifelines drawn from the top of the diagram to the bottom. Objects may be 
created during the interaction. Their lifelines start with the receipt of the message stereotyped as 
create. Objects may be destroyed during the interaction. Their lifelines end with the receipt of 
the message stereotyped as destroy (and are given the visual cue of a large X, marking the end 
of their lives). 

Note 

If an object changes the values of its attributes, its state, or its roles, you can place a 
copy of the object icon on its lifeline at the point the change occurs, showing those 
modifications. 

 
Second, there is the focus of control. The focus of control is a tall, thin rectangle that shows the 
period of time during which an object is performing an action, either directly or through a 
subordinate procedure. The top of the rectangle is aligned with the start of the action; the bottom 
is aligned with its completion (and can be marked by a return message). You can show the 
nesting of a focus of control (caused by recursion, a call to a self-operation, or by a callback from 
another object) by stacking another focus of control slightly to the right of its parent (and can do 
so to an arbitrary depth). If you want to be especially precise about where the focus of control 
lies, you can also shade the region of the rectangle during which the object's method is actually 
computing (and control has not passed to another object). 

Note 

Unlike a sequence diagram, you don't show the lifeline of an object explicitly in a 
collaboration diagram, although you can show both create and destroy messages. 
In addition, you don't show the focus of control explicitly in a collaboration diagram, 
although each message's sequence number can indicate nesting. 

 

Collaboration Diagrams 

A collaboration diagram emphasizes the organization of the objects that participate in an 
interaction. As Figure 18-3 shows, you form a collaboration diagram by first placing the objects 
that participate in the interaction as the vertices in a graph. Next, you render the links that 
connect these objects as the arcs of this graph. Finally, you adorn these links with the messages 
that objects send and receive. This gives the reader a clear visual cue to the flow of control in the 
context of the structural organization of objects that collaborate. 

Figure 18-3 Collaboration Diagram 



 
Collaboration diagrams have two features that distinguish them from sequence diagrams. 

First, there is the path. To indicate how one object is linked to another, you can attach a path 
stereotype to the far end of a link (such as »localᑺ, indicating that the designated object is local 
to the sender). Typically, you will only need to render the path of the link explicitly for local, 
parameter, global, and self (but not association) paths. 

You can use an advanced form of sequence numbers to distinguish concurrent flows of control, 
as discussed in Chapter 22; path stereotypes are discussed in Chapter 17; complex branching 
and iteration can be more easily specified in activity diagrams, as discussed in Chapter 19. 

Second, there is the sequence number. To indicate the time order of a message, you prefix the 
message with a number (starting with the message numbered 1), increasing monotonically for 
each new message in the flow of control (2, 3, and so on). To show nesting, you use Dewey 
decimal numbering (1 is the first message; 1.1 is the first message nested in message 1; 1.2 is 
the second message nested in message 1; and so on). You can show nesting to an arbitrary 
depth. Note also that, along the same link, you can show many messages (possibly being sent 
from different directions), and each will have a unique sequence number. 

Most of the time, you'll model straight, sequential flows of control. However, you can also model 
more-complex flows, involving iteration and branching. An iteration represents a repeated 
sequence of messages. To model an iteration, you prefix the sequence number of a message 
with an iteration expression such as *[i := 1..n] (or just * if you want to indicate iteration but 
don't want to specify its details). An iteration indicates that the message (and any nested 
messages) will be repeated in accordance with the given expression. Similarly, a condition 
represents a message whose execution is contingent on the evaluation of a Boolean condition. 
To model a condition, you prefix the sequence number of a message with a condition clause, 
such as [x > 0]. The alternate paths of a branch will have the same sequence number, but 
each path must be uniquely distinguishable by a nonoverlapping condition. 

For both iteration and branching, the UML does not prescribe the format of the expression inside 
the brackets; you can use pseudocode or the syntax of a specific programming language. 

Note 



You don't show the links among objects explicitly in a sequence diagram. You don't 
show the sequence number of a message in a sequence diagram explicitly either: it is 
implicit in the physical ordering of messages from top to bottom of the diagram. You 
can show iteration and branching, however. In a sequence diagram, the alternative 
paths of a branch are rendered by separate messages branching from the same point. 
Pragmatically, you can show only simple branching in sequence diagrams; you can 
show more complex branching in collaboration diagrams. 

 

Semantic Equivalence 

Because they both derive from the same information in the UML's metamodel, sequence 
diagrams and collaboration diagrams are semantically equivalent. As a result, you can take a 
diagram in one form and convert it to the other without any loss of information, as you can see in 
the previous two figures, which are semantically equivalent. However, this does not mean that 
both diagrams will explicitly visualize the same information. For example, in the previous two 
figures, the collaboration diagram shows how the objects are linked (note the »localᑺ and 
»globalᑺ stereotypes), whereas the corresponding sequence diagram does not. Similarly, the 
sequence diagram shows message return (note the return value committed), but the 
corresponding collaboration diagram does not. In both cases, the two diagrams share the same 
underlying model, but each may render some things the other does not. 

Common Uses 

The five views of an architecture are discussed in Chapter 2; instances are discussed in 
Chapter 13; classes are discussed in Chapters 4 and 9; active classes are discussed in 
Chapter 22; interfaces are discussed in Chapter 11; components are discussed in Chapter 
25; nodes are discussed in Chapter 26; systems and subsystems are discussed in Chapter 
31; operations are discussed in Chapters 4 and 9; use cases are discussed in Chapter 16; 
collaborations are discussed in Chapter 27. 

You use interaction diagrams to model the dynamic aspects of a system. These dynamic aspects 
may involve the interaction of any kind of instance in any view of a system's architecture, 
including instances of classes (including active classes), interfaces, components, and nodes. 

When you use an interaction diagram to model some dynamic aspect of a system, you do so in 
the context of the system as a whole, a subsystem, an operation, or a class. You can also attach 
interaction diagrams to use cases (to model a scenario) and to collaborations (to model the 
dynamic aspects of a society of objects). 

When you model the dynamic aspects of a system, you typically use interaction diagrams in two 
ways. 

1. To model flows of control by time ordering 

Here you'll use sequence diagrams. Modeling a flow of control by time ordering emphasizes the 
passing of messages as they unfold over time, which is a particularly useful way to visualize 
dynamic behavior in the context of a use case scenario. Sequence diagrams do a better job of 
visualizing simple iteration and branching than do collaboration diagrams. 

2. To model flows of control by organization 

Here you'll use collaboration diagrams. Modeling a flow of control by organization emphasizes the 
structural relationships among the instances in the interaction, along which messages may be 



passed. Collaboration diagrams do a better job of visualizing complex iteration and branching and 
of visualizing multiple concurrent flows of control than do sequence diagrams. 

Common Modeling Techniques 

Modeling Flows of Control by Time Ordering 

Systems and subsystems are discussed in Chapter 31; operations and classes are discussed in 
Chapters 4 and 9; use cases are discussed in Chapter 16; collaborations are discussed in 
Chapter 27. 

Consider the objects that live in the context of a system, subsystem, operation or class. Consider 
also the objects and roles that participate in a use case or collaboration. To model a flow of 
control that winds through these objects and roles, you use an interaction diagram; to emphasize 
the passing of messages as they unfold over time, you use a sequence diagram, a kind of 
interaction diagram. 

To model a flow of control by time ordering, 

• Set the context for the interaction, whether it is a system, subsystem, operation, or class, 
or one scenario of a use case or collaboration. 

• Set the stage for the interaction by identifying which objects play a role in the interaction. 
Lay them out on the sequence diagram from left to right, placing the more important 
objects to the left and their neighboring objects to the right. 

• Set the lifeline for each object. In most cases, objects will persist through the entire 
interaction. For those objects that are created and destroyed during the interaction, set 
their lifelines, as appropriate, and explicitly indicate their birth and death with 
appropriately stereotyped messages. 

• Starting with the message that initiates this interaction, lay out each subsequent message 
from top to bottom between the lifelines, showing each message's properties (such as its 
parameters), as necessary to explain the semantics of the interaction. 

• If you need to visualize the nesting of messages or the points in time when actual 
computation is taking place, adorn each object's lifeline with its focus of control. 

• If you need to specify time or space constraints, adorn each message with a timing mark 
and attach suitable time or space constraints. 

• If you need to specify this flow of control more formally, attach pre- and postconditions to 
each message. 

Timing marks are discussed in Chapter 23; pre- and postconditions are discussed in Chapter 
4; packages are discussed in Chapter 12. 

A single sequence diagram can show only one flow of control (although you can show simple 
variations by using the UML's notation for iteration and branching). Typically, you'll have a 
number of interaction diagrams, some of which are primary and others that show alternative 
paths or exceptional conditions. You can use packages to organize these collections of sequence 
diagrams, giving each diagram a suitable name to distinguish it from its siblings. 

Signals are discussed in Chapter 20; timing marks are discussed in Chapter 23; constraints 
are discussed in Chapter 6; responsibilities are discussed in Chapter 4; notes are discussed in 
Chapter 6. 



For example, Figure 18-4 shows a sequence diagram that specifies the flow of control involved 
in initiating a simple, two-party phone call. At this level of abstraction, there are four objects 
involved: two Callers (s and r), an unnamed telephone Switch, and c, the reification of the 
Conversation between the two parties. The sequence begins with one Caller (s) dispatching 
a signal (liftReceiver) to the Switch object. In turn, the Switch calls setDialTone on the 
Caller, and the Caller iterates on the message dialDigit. Note that this message has a 
timing mark (dialing) that is used in a timing constraint (its executionTime must be less than 
30 seconds). This diagram does not indicate what happens if this time constraint is violated. For 
that you could include a branch or a completely separate sequence diagram. The Switch object 
then calls itself with the message routeCall. It then creates a Conversation object (c), to 
which it delegates the rest of the work. Although not shown in this interaction, c would have the 
additional responsibility of being a party in the switch's billing mechanism (which would be 
expressed in another interaction diagram). The Conversation object (c) rings the Caller (r), 
who asynchronously sends the message liftReceiver. The Conversation object then tells 
the Switch to connect the call, then tells both Caller objects to connect, after which they 
may exchange information, as indicated by the attached note. 

Figure 18-4 Modeling Flows of Control by Time Ordering 

 
Note 

In sequence diagrams, you may want to model the changing state, role, or attributes 
values of an object. There are two ways to do this. First, the object may appear 
multiple times in the diagram, each showing different state, role, or attribute values, 
and then you use a transition stereotyped as become to indicate its change. Second, 
for changing state, you can place a state icon directly on the object's lifeline. 



 
An interaction diagram can begin or end at any point of a sequence. A complete trace of the flow 
of control would be incredibly complex, so it's reasonable to break up parts of a larger flow into 
separate diagrams. 

Modeling Flows of Control by Organization 

Systems and subsystems are discussed in Chapter 31; operations and classes are discussed in 
Chapters 4 and 9; use cases are discussed in Chapter 16; collaborations are discussed in 
Chapter 27. 

Consider the objects that live in the context of a system, subsystem, operation, or class. Consider 
also the objects and roles that participate in a use case or collaboration. To model a flow of 
control that winds through these objects and roles, you use an interaction diagram; to show the 
passing of messages in the context of that structure, you use a collaboration diagram, a kind of 
interaction diagram. 

To model a flow of control by organization, 

Dependency relationships are discussed in Chapters 5 and 10; become and copy are 
discussed in Chapter 13; path stereotypes are discussed in Chapter 15. 

• Set the context for the interaction, whether it is a system, subsystem, operation, or class, 
or one scenario of a use case or collaboration. 

• Set the stage for the interaction by identifying which objects play a role in the interaction. 
Lay them out on the collaboration diagram as vertices in a graph, placing the more 
important objects in the center of the diagram and their neighboring objects to the 
outside. 

• Set the initial properties of each of these objects. If the attribute values, tagged values, 
state, or role of any object changes in significant ways over the duration of the 
interaction, place a duplicate object on the diagram, update it with these new values, and 
connect them by a message stereotyped as become or copy (with a suitable sequence 
number). 

• Specify the links among these objects, along which messages may pass. 

1. Lay out the association links first; these are the most important ones, because 
they represent structural connections. 

2. Lay out other links next, and adorn them with suitable path stereotypes (such as 
global and local) to explicitly specify how these objects are related to one 
another. 

• Starting with the message that initiates this interaction, attach each subsequent message 
to the appropriate link, setting its sequence number, as appropriate. Show nesting by 
using Dewey decimal numbering. 

• If you need to specify time or space constraints, adorn each message with a timing mark 
and attach suitable time or space constraints. 

• If you need to specify this flow of control more formally, attach pre- and postconditions to 
each message. 



Timing marks are discussed in Chapter 23; pre- and post conditions are discussed in Chapter 
4; packages are discussed in Chapter 12. 

As with sequence diagrams, a single collaboration diagram can show only one flow of control 
(although you can show simple variations by using the UML's notation for interaction and 
branching). Typically, you'll have a number of such interaction diagrams, some of which are 
primary and others that show alternative paths or exceptional conditions. You can use packages 
to organize these collections of collaboration diagrams, giving each diagram a suitable name to 
distinguish it from its siblings. 

For example, Figure 18-5 shows a collaboration diagram that specifies the flow of control 
involved in registering a new student at a school, with an emphasis on the structural relationships 
among these objects. You see five objects: a RegistrarAgent (r), a Student (s), two Course 
objects (c1 and c2), and an unnamed School object. The flow of control is numbered explicitly. 
Action begins with the RegistrarAgent creating a Student object, adding the student to the 
school (the message addStudent), then telling the Student object to register itself. The 
Student object then invokes getSchedule on itself, presumably obtaining the Course objects 
for which it must register. The Student object then adds itself to each Course object. The flow 
ends with s rendered again, showing that it has an updated value for its registered attribute. 

Figure 18-5 Modeling Flows of Control by Organization 

 
Note that this diagram shows a link between the School object and the two Course objects, 
plus another link between the School object and the Student object, although no messages 
are shown along these paths. These links help explain how the Student object can see the two 
Course objects to which it adds itself. s, c1, and c2 are linked to the School via association, so 
s can find c1 and c2 during its call to getSchedule (which might return a collection of Course 
objects), indirectly through the School object. 

Forward and Reverse Engineering 

Forward engineering (the creation of code from a model) is possible for both sequence and 
collaboration diagrams, especially if the context of the diagram is an operation. For example, 
using the previous collaboration diagram, a reasonably clever forward engineering tool could 
generate the following Java code for the operation register, attached to the Student class. 



       
        public void register() { 
          CourseCollection c = getSchedule(); 
          for (int i = 0; i < c.size(); i++) 
            c.item(i).add(this); 
          this.registered = true; 
        } 

"Reasonably clever" means the tool would have to realize that getSchedule returns a 
CourseCollection object, which it could determine by looking at the operation's signature. By 
walking across the contents of this object using a standard iteration idiom (which the tool could 
know about implicitly), the code could then generalize to any number of course offerings. 

Reverse engineering (the creation of a model from code) is also possible for both sequence and 
collaboration diagrams, especially if the context of the code is the body of an operation. 
Segments of the previous diagram could have been produced by a tool from a prototypical 
execution of the register operation. 

Note 

Forward engineering is straightforward; reverse engineering is hard. It's easy to get too 
much information from simple reverse engineering, and so the hard part is being 
clever about what details to keep. 

 
However, more interesting than the reverse engineering of a model from code is the animation of 
a model against the execution of a deployed system. For example, given the previous diagram, a 
tool could animate the messages in the diagram as they were dispatched in a running system. 
Even better, with this tool under the control of a debugger, you could control the speed of 
execution, possibly setting breakpoints to stop the action at interesting points to examine the 
attribute values of individual objects. 

Hints and Tips 
When you create interaction diagrams in the UML, remember that sequence diagrams and 
collaboration diagrams are both projections on the same model of a system's dynamic aspects. 
No single interaction diagram can capture everything about a system's dynamic aspects. Rather, 
you'll want to use many interaction diagrams to model the dynamics of the system as a whole, as 
well as its subsystems, operations, classes, use cases, and collaborations. 

A well-structured interaction diagram 

• Is focused on communicating one aspect of a system's dynamics. 

• Contains only those elements that are essential to understanding that aspect. 

• Provides detail consistent with its level of abstraction and should expose only those 
adornments that are essential to understanding. 

• Is not so minimalist that it misinforms the reader about semantics that are important. 

When you draw an interaction diagram, 

• Give it a name that communicates its purpose. 



• Use a sequence diagram if you want to emphasize the time ordering of messages. Use a 
collaboration diagram if you want to emphasize the organization of the objects involved in 
the interaction. 

• Lay out its elements to minimize lines that cross. 

• Use notes and color as visual cues to draw attention to important features of your 
diagram. 

• Use branching sparingly; you can represent complex branching much better using activity 
diagrams. 

Chapter 19. Activity Diagrams 
In this chapter 

• Modeling a workflow 

• Modeling an operation 

• Forward and reverse engineering 

Sequence diagrams, collaboration diagrams, statechart diagrams, and use case diagrams also 
model the dynamic aspects of systems; sequence and collaboration diagrams are discussed in 
Chapter 18; statechart diagrams are discussed in Chapter 24; use case diagrams are 
discussed in Chapter 17; actions are discussed in Chapter 15. 

Activity diagrams are one of the five diagrams in the UML for modeling the dynamic aspects of 
systems. An activity diagram is essentially a flowchart, showing flow of control from activity to 
activity. 

You use activity diagrams to model the dynamic aspects of a system. For the most part, this 
involves modeling the sequential (and possibly concurrent) steps in a computational process. 
With an activity diagram, you can also model the flow of an object as it moves from state to state 
at different points in the flow of control. Activity diagrams may stand alone to visualize, specify, 
construct, and document the dynamics of a society of objects, or they may be used to model the 
flow of control of an operation. Whereas interaction diagrams emphasize the flow of control from 
object to object, activity diagrams emphasize the flow of control from activity to activity. An activity 
is an ongoing nonatomic execution within a state machine. Activities ultimately result in some 
action, which is made up of executable atomic computations that results in a change in state of 
the system or the return of a value. 

Activity diagrams are not only important for modeling the dynamic aspects of a system, but also 
for constructing executable systems through forward and reverse engineering. 

Getting Started 
Consider the workflow associated with building a house. First, you select a site. Next, you 
commission an architect to design your house. After you've settled on the plan, your developer 
asks for bids to price the house. Once you agree on a price and a plan, construction can begin. 
Permits are secured, ground is broken, the foundation is poured, the framing is erected, and so 
on, until everything is done. You're then handed the keys and a certificate of occupancy, and you 
take possession of the house. 

Although that's a tremendous simplification of what really goes on in a construction process, it 
does capture the critical path of the workflow. In a real project, there are lots of parallel activities 



among various trades. Electricians can be working at the same time as plumbers and carpenters, 
for example. You'll also encounter conditions and branches. For example, depending on the 
result of soils tests, you might have to blast, dig, or float. There might even be loops. For 
example, a building inspection might reveal code violations that result in scrap and rework. 

In the construction industry, such techniques as Gantt charts and Pert charts are commonly used 
for visualizing, specifying, constructing, and documenting the workflow of the project. 

Modeling the structural aspects of a system is discussed in Sections 2 and 3; interaction 
diagrams are discussed in Chapter 18. 

In modeling software-intensive systems, you have a similar problem. How do you best model a 
workflow or an operation, both of which are aspects of the system's dynamics? The answer is 
that you have two basic choices, similar to the use of Gantt charts and Pert charts. 

On the one hand, you can build up storyboards of scenarios, involving the interaction of certain 
interesting objects and the messages that may be dispatched among them. In the UML, you can 
model these storyboards in two ways: by emphasizing the time ordering of messages (using 
sequence diagrams) or by emphasizing the structural relationships among the objects that 
interact (using collaboration diagrams). Interaction diagrams such as these are akin to Gantt 
charts, which focus on the objects (resources) that carry out some activity over time. 

Actions are discussed in Chapter 15. 

On the other hand, you can model these dynamic aspects using activity diagrams, which focus 
first on the activities that take place among objects, as Figure 19-1 shows. In that regard, 
activity diagrams are akin to Pert charts. An activity diagram is essentially a flowchart that 
emphasizes the activity that takes place over time. You can think of an activity diagram as an 
interaction diagram turned inside out. An interaction diagram looks at the objects that pass 
messages; an activity diagram looks at the operations that are passed among objects. The 
semantic difference is subtle, but it results in a very different way of looking at the world. 

Figure 19-1 Activity Diagrams 



 

Terms and Concepts 
An activity diagram shows the flow from activity to activity. An is an ongoing nonatomic execution 
within a state machine. Activities ultimately result in some action, which is made up of executable 
atomic computations that result in a change in state of the system or the return of a value. Actions 
encompass calling another operation, sending a signal, creating or destroying an object, or some 
pure computation, such as evaluating an expression. Graphically, an activity diagram is a 
collection of vertices and arcs. 

Common Properties 

The general properties of diagrams are discussed in Chapter 7. 

An activity diagram is just a special kind of diagram and shares the same common properties as 
do all other diagrams• a name and graphical contents that are a projection into a model. What 
distinguishes an interaction diagram from all other kinds of diagrams is its content. 

Contents 

States, transitions, and state machines are discussed in Chapter 21; objects are discussed in 
Chapter 13. 

Activity diagrams commonly contain 



• Activity states and action states 

• Transitions 

• Objects 

Note 

An activity diagram is basically a projection of the elements found in an activity graph, 
a special case of a state machine in which all or most states are activity states and in 
which all or most transitions are triggered by completion of activities in the source 
state. Because an activity diagram is a kind of state machine, all the characteristics of 
state machines apply. That means that activity diagrams may contain simple and 
composite states, branches, forks, and joins. 

 
Like all other diagrams, activity diagrams may contain notes and constraints. 

Action States and Activity States 

Attributes and operations are discussed in Chapters 4 and 9; signals are discussed in Chapter 
20; creation and destruction of objects are discussed in Chapter 15 ; states and state machines 
are discussed in Chapter 21. 

In the flow of control modeled by an activity diagram, things happen. You might evaluate some 
expression that sets the value of an attribute or that returns some value. Alternately, you might 
call an operation on an object, send a signal to an object, or even create or destroy an object. 
These executable, atomic computations are called action states because they are states of the 
system, each representing the execution of an action. As Figure 19-2 shows, you represent an 
action state using a lozenge shape (a symbol with horizontal top and bottom and convex sides). 
Inside that shape, you may write any expression. 

Figure 19-2 Action States 

 
Note 

The UML does not prescribe the language of these expressions. Abstractly, you might 
just use structured text; more concretely, you might use the syntax and semantics of a 
specific programming language. 



 
Action states can't be decomposed. Furthermore, action states are atomic, meaning that events 
may occur, but the work of the action state is not interrupted. Finally, the work of an action state is 
generally considered to take insignificant execution time. 

Modeling time and space is discussed in Chapter 23. 

Note 

In the real world, of course, every computation takes some amount of time and space. 
Especially for hard real time systems, it's important that you model these properties. 

 
State machines, the parts of a state (including entry and exit actions) and submachines are 
discussed in Chapter 21. 

In contrast, activity states can be further decomposed, their activity being represented by other 
activity diagrams. Furthermore, activity states are not atomic, meaning that they may be 
interrupted and, in general, are considered to take some duration to complete. You can think of 
an action state as a special case of an activity state. An action state is an activity state that 
cannot be further decomposed. Similarly, you can think of an activity state as a composite, whose 
flow of control is made up of other activity states and action states. Zoom into the details of an 
activity state, and you'll find another activity diagram. As Figure 19-3 shows, there's no 
notational distinction between action and activity states, except that an activity state may have 
additional parts, such as entry and exit actions (actions which are involved on entering and 
leaving the state, respectively) and submachine specifications. 

Figure 19-3 Activity States 

 
Note 

Action states and activity states are just special kinds of states in a state machine. 
When you enter an action or activity state, you simply perform the action or the 
activity; when you finish, control passes to the next action or activity. Activity states are 
somewhat of a shorthand, therefore. An activity state is semantically equivalent to 
expanding its activity graph (and transitively so) in place until you only see actions. 
Nonetheless, activity states are important because they help you break complex 
computations into parts, in the same manner as you use operations to group and 
reuse expressions. 

 

Transitions 

Transitions are discussed in Chapter 21. 



Triggerless transitions may have guard conditions, meaning that such a transition will fire only if 
that condition is met; guard conditions are discussed in Chapter 21. 

When the action or activity of a state completes, flow of control passes immediately to the next 
action or activity state. You specify this flow by using transitions to show the path from one action 
or activity state to the next action or activity state. In the UML, you represent a transition as a 
simple directed line, as Figure 19-4 shows. 

Figure 19-4 Triggerless Transitions 

 
Note 

Semantically, these are called triggerless, or completion, transitions because control 
passes immediately once the work of the source state is done. Once the action of a 
given source state completes, you execute that state's exit action (if any). Next, and 
without delay, control follows the transition and passes on to the next action or activity 
state. You execute that state's entry action (if any), then you perform the action or 
activity of the target state, again following the next transition once that state's work is 
done. This flow of control continues indefinitely (in the case of an infinite activity) or 
until you encounter a stop state. 

 
Indeed, a flow of control has to start and end someplace (unless, of course, it's an infinite flow, in 
which case it will have a beginning but no end). Therefore, as the figure shows, you may specify 
this initial state (a solid ball) and stop state (a solid ball inside a circle). 

Branching 

Branches are a notational convenience, semantically equivalent to multiple transitions with 
guards, as discussed in Chapter 21. 

Simple, sequential transitions are common, but they aren't the only kind of path you'll need to 
model a flow of control. As in a flowchart, you can include a branch, which specifies alternate 
paths taken based on some Boolean expression. As Figure 19-5 shows, you represent a branch 
as a diamond. A branch may have one incoming transition and two or more outgoing ones. On 
each outgoing transition, you place a Boolean expression, which is evaluated only once on 
entering the branch. Across all these outgoing transitions, guards should not overlap (otherwise, 
the flow of control would be ambiguous), but they should cover all possibilities (otherwise, the 
flow of control would freeze). 

Figure 19-5 Branching 



 
As a convenience, you can use the keyword else to mark one outgoing transition, representing 
the path taken if no other guard expression evaluates to true. 

Branching and iteration are possible in interaction diagrams, as discussed in Chapter 18. 

You can achieve the effect of iteration by using one action state that sets the value of an iterator, 
another action state that increments the iterator, and a branch that evaluates if the iteration is 
finished. 

Note 

The UML does not prescribe the language of these expressions. Abstractly, you might 
just use structured text; more concretely, you might use the syntax and semantics of a 
specific programming language. 

 

Forking and Joining 

Each concurrent flow of control lives in the context of an independent active object, which is 
typically modeled as either a process or a thread, as discussed in Chapter 22; nodes are 
discussed in Chapter 26. 

Simple and branching sequential transitions are the most common paths you'll find in activity 
diagrams. However• especially when you are modeling workflows of business processes• you 
might encounter flows that are concurrent. In the UML, you use a synchronization bar to specify 
the forking and joining of these parallel flows of control. A synchronization bar is rendered as a 
thick horizontal or vertical line. 

For example, consider the concurrent flows involved in controlling an audio-animatronic device 
that mimics human speech and gestures. As Figure 19-6 shows, a fork represents the splitting 
of a single flow of control into two or more concurrent flows of control. A fork may have one 
incoming transition and two or more outgoing transitions, each of which represents an 
independent flow of control. Below the fork, the activities associated with each of these paths 
continues in parallel. Conceptually, the activities of each of these flows are truly concurrent, 
although, in a running system, these flows may be either truly concurrent (in the case of a system 
deployed across multiple nodes) or sequential yet interleaved (in the case of a system deployed 
across one node), thus giving only the illusion of true concurrency. 

Figure 19-6 Forking and Joining 



 
Active objects are discussed in Chapter 22; signals are discussed in Chapter 20. 

As the figure also shows, a join represents the synchronization of two or more concurrent flows of 
control. A join may have two or more incoming transitions and one outgoing transition. Above the 
join, the activities associated with each of these paths continues in parallel. At the join, the 
concurrent flows synchronize, meaning that each waits until all incoming flows have reached the 
join, at which point one flow of control continues on below the join. 

Note 

Joins and forks should balance, meaning that the number of flows that leave a fork 
should match the number of flows that enter its corresponding join. Also, activities that 
are in parallel flows of control may communicate with one another by sending signals. 
This style of communicating sequential processes is called a coroutine. Most of the 
time, you model this style of communication using active objects. You can also model 
the sending of and response to these signals in the submachines associated with each 
communicating activity state. For example, suppose the activity Stream audio 
needed to tell the activity Synch mouth when important pauses and intonations 
occurred. In the state machine for Stream audio, you'd see signals sent to the state 
machine for Synch mouth. Similarly, in the state machine for Synch mouth, you'd 
see transitions triggered by these same signals, to which the Synch mouth state 
machine would respond. 

 

Swimlanes 

You'll find it useful, especially when you are modeling workflows of business processes, to 
partition the activity states on an activity diagram into groups, each group representing the 



business organization responsible for those activities. In the UML, each group is called a 
swimlane because, visually, each group is divided from its neighbor by a vertical solid line, as 
shown in Figure 19-7. A swimlane specifies a locus of activities. 

Figure 19-7 Swimlanes 

 
A swimlane is a kind of package; packages are discussed in Chapter 12; classes are discussed 
in Chapters 4 and 9; processes and threads are discussed inChapter 22. 

Each swimlane has a name unique within its diagram. A swimlane really has no deep semantics, 
except that it may represent some real-world entity. Each swimlane represents a high-level 
responsibility for part of the overall activity of an activity diagram, and each swimlane may 



eventually be implemented by one or more classes. In an activity diagram partitioned into 
swimlanes, every activity belongs to exactly one swimlane, but transitions may cross lanes. 

Note 

There's a loose connection between swimlanes and concurrent flows of control. 
Conceptually, the activities of each swimlane are generally• but not always•
considered separate from the activities of neighboring swimlanes. That makes sense 
because, in the real world, the business organizations that generally map to these 
swimlanes are independent and concurrent. 

 

Object Flow 

Objects are discussed in Chapter 13 ; modeling the vocabulary of a system is discussed in 
Chapter 4. 

Objects may be involved in the flow of control associated with an activity diagram. For example, 
in the workflow of processing an order as in the previous figure, the vocabulary of your problem 
space will also include such classes as Order and Bill. Instances of these two classes will be 
produced by certain activities (Process order will create an Order object, for example); other 
activities may modify these objects (for example, Ship order will change the state of the Order 
object to filled). 

Dependency relationships are discussed in Chapters 5 and 10. 

As Figure 19-8 shows, you can specify the things that are involved in an activity diagram by 
placing these objects in the diagram, connected using a dependency to the activity or transition 
that creates, destroys, or modifies them. This use of dependency relationships and objects is 
called an object flow because it represents the participation of an object in a flow of control. 

Figure 19-8 Object Flow 



 
The values and state of an object are discussed in Chapter 13; attributes are discussed in 
Chapters 4 and 9. 

In addition to showing the flow of an object through an activity diagram, you can also show how 
its role, state and attribute values change. As shown in the figure, you represent the state of an 
object by naming its state in brackets below the object's name. Similarly, you can represent the 
value of an object's attributes by rendering them in a compartment below the object's name. 

Common Uses 

The five views of an architecture are discussed in Chapter 2 ; classes are discussed in 
Chapters 4 and 9 ; active classes are discussed in Chapter 22 ; interfaces are discussed in 
Chapter 11 ; components are discussed in Chapter 25 ; nodes are discussed in Chapter 26 ; 
systems and subsystems are discussed in Chapter 31; operations are discussed in Chapters 4 
and 9 ; use cases and actors are discussed in Chapter 16. 



You use activity diagrams to model the dynamic aspects of a system. These dynamic aspects 
may involve the activity of any kind of abstraction in any view of a system's architecture, including 
classes (which includes active classes), interfaces, components, and nodes. 

When you use an activity diagram to model some dynamic aspect of a system, you can do so in 
the context of virtually any modeling element. Typically, however, you'll use activity diagrams in 
the context of the system as a whole, a subsystem, an operation, or a class. You can also attach 
activity diagrams to use cases (to model a scenario) and to collaborations (to model the dynamic 
aspects of a society of objects). 

When you model the dynamic aspects of a system, you'll typically use activity diagrams in two 
ways. 

1. To model a workflow 

Here you'll focus on activities as viewed by the actors that collaborate with the system. Workflows 
often lie on the fringe of software-intensive systems and are used to visualize, specify, construct, 
and document business processes that involve the system you are developing. In this use of 
activity diagrams, modeling object flow is particularly important. 

2. To model an operation 

Here you'll use activity diagrams as flowcharts, to model the details of a computation. In this use 
of activity diagrams, the modeling of branch, fork, and join states is particularly important. The 
context of an activity diagram used in this way involves the parameters of the operation and its 
local objects. 

Common Modeling Techniques 

Modeling a Workflow 

Modeling the context of a system is discussed in Chapter 17. 

No software-intensive system exists in isolation; there's always some context in which a system 
lives, and that context always encompasses actors that interact with the system. Especially for 
mission critical, enterprise software, you'll find automated systems working in the context of 
higher-level business processes. These business processes are kinds of workflows because they 
represent the flow of work and objects through the business. For example, in a retail business, 
you'll have some automated systems (for example, point-of-sale systems that interact with 
marketing and warehouse systems), as well as human systems (the people that work at each 
retail outlet, as well as the telesales, marketing, buying, and shipping departments). You can 
model the business processes for the way these various automated and human systems 
collaborate by using activity diagrams. 

Modeling the vocabulary of a system is discussed in Chapter 4 ; preconditions and 
postconditions are discussed in Chapter 9. 

To model a workflow, 

• Establish a focus for the workflow. For nontrivial systems, it's impossible to show all 
interesting workflows in one diagram. 

• Select the business objects that have the high-level responsibilities for parts of the overall 
workflow. These may be real things from the vocabulary of the system, or they may be 
more abstract. In either case, create a swimlane for each important business object. 



• Identify the preconditions of the workflow's initial state and the postconditions of the 
workflow's final state. This is important in helping you model the boundaries of the 
workflow. 

• Beginning at the workflow's initial state, specify the activities and actions that take place 
over time and render them in the activity diagram as either activity states or action states. 

• For complicated actions, or for sets of actions that appear multiple times, collapse these 
into activity states, and provide a separate activity diagram that expands on each. 

• Render the transitions that connect these activity and action states. Start with the 
sequential flows in the workflow first, next consider branching, and only then consider 
forking and joining. 

• If there are important objects that are involved in the workflow, render them in the activity 
diagram, as well. Show their changing values and state as necessary to communicate the 
intent of the object flow. 

For example, Figure 19-9 shows an activity diagram for a retail business, which specifies the 
workflow involved when a customer returns an item from a mail order. Work starts with the 
Customer action Request return and then flows through Telesales (Get return 
number), back to the Customer (Ship item), then to the Warehouse (Receive item then 
Restock item), finally ending in Accounting (Credit account). As the diagram indicates, 
one significant object (i, an instance of Item) also flows the process, changing from the 
returned to the available state. 

Figure 19-9 Modeling a Workflow 

 
Note 



Workflows are most often business processes, but not always. For example, you can 
also use activity diagrams to specify software development processes, such as your 
process for configuration management. Furthermore, you can use activity diagrams to 
model nonsoftware systems, such as the flow of patients through a healthcare system. 

 
In this example, there are no branches, forks, or joins. You'll encounter these features in more 
complex workflows. 

Modeling an Operation 

Classes and operations are discussed in Chapters 4 and 9 ; interfaces are discussed in 
Chapter 11. 

An activity diagram can be attached to any modeling element for the purpose of visualizing, 
specifying, constructing, and documenting that element's behavior. You can attach activity 
diagrams to classes, interfaces, components, nodes, use cases, and collaborations. The most 
common element to which you'll attach an activity diagram is an operation. 

Components are discussed in Chapter 25; nodes are discussed in Chapter 26 ; use cases are 
discussed in Chapter 16 ; collaborations are discussed in Chapter 27 ; preconditions, 
postconditions, and invariants are discussed in Chapter 9. 

Used in this manner, an activity diagram is simply a flowchart of an operation's actions. An 
activity diagram's primary advantage is that all the elements in the diagram are semantically tied 
to a rich underlying model. For example, any other operation or signal that an action state 
references can be type checked against the class of the target object. 

To model an operation, 

• Collect the abstractions that are involved in this operation. This includes the operation's 
parameters (including its return type, if any), the attributes of the enclosing class, and 
certain neighboring classes. 

• Identify the preconditions at the operation's initial state and the postconditions at the 
operation's final state. Also identify any invariants of the enclosing class that must hold 
during the execution of the operation. 

• Beginning at the operation's initial state, specify the activities and actions that take place 
over time and render them in the activity diagram as either activity states or action states. 

• Use branching as necessary to specify conditional paths and iteration. 

• Only if this operation is owned by an active class, use forking and joining as necessary to 
specify parallel flows of control. 

Active classes are discussed in Chapter 22. 

For example, in the context of the class Line, Figure 19-10 shows an activity diagram that 
specifies the algorithm of the operation intersection, whose signature includes one 
parameter (l, an in parameter of the class Line) and one return value (of the class Point). The 
class Line has two attributes of interest: slope (which holds the slope of the line) and delta 
(which holds the offset of the line relative to the origin). 

Figure 19-10 Modeling an Operation 



 
If an operation involves the interaction of a society of objects, you can also model the realization 
of that operation using collaborations, as discussed in Chapter 27. 

The algorithm of this operation is simple, as shown in the following activity diagram. First, there's 
a guard that tests whether the slope of the current line is the same as the slope of parameter 
l. If so, the lines do not intersect, and a Point at (0,0) is returned. Otherwise, the operation 
first calculates an x value for the point of intersection, then a y value; x and y are both objects 
local to the operation. Finally, a Point at (x,y) is returned. 

Note 

Using activity diagrams to flowchart an operation lies on the edge of making the UML a 
visual programming language. You can<canII> flowchart every operation, but 
pragmatically, you won't want to. Writing the body of an operation in a specific 
programming language is usually more direct. You will want to use activity diagrams to 
model an operation when the behavior of that operation is complex and therefore 
difficult to understand just by staring at code. Looking at a flowchart will reveal things 
about the algorithm you could not have seen just by looking at the code. 

 

Forward and Reverse Engineering 

Forward engineering (the creation of code from a model) is possible for activity diagrams, 
especially if the context of the diagram is an operation. For example, using the previous activity 
diagram, a forward engineering tool could generate the following C++ code for the operation 
intersection. 
       
        Point Line::intersection (l : Line) { 
          if (slope == l.slope) return Point(0,0); 
          int x = (l.delta - delta) / (slope - l.slope); 
          int y = (slope * x) + delta; 



          return Point(x, y); 
          } 

There's a bit of cleverness here, involving the declaration of the two local variables. A less-
sophisticated tool might have first declared the two variables and then set their values. 

Reverse engineering (the creation of a model from code) is also possible for activity diagrams, 
especially if the context of the code is the body of an operation. In particular, the previous 
diagram could have been generated from the implementation of the class Line. 

More interesting than the reverse engineering of a model from code is the animation of a model 
against the execution of a deployed system. For example, given the previous diagram, a tool 
could animate the action states in the diagram as they were dispatched in a running system. 
Even better, with this tool also under the control of a debugger, you could control the speed of 
execution, possibly setting breakpoints to stop the action at interesting points in time to examine 
the attribute values of individual objects. 

Hints and Tips 
When you create activity diagrams in the UML, remember that activity diagrams are just 
projections on the same model of a system's dynamic aspects. No single activity diagram can 
capture everything about a system's dynamic aspects. Rather, you'll want to use many activity 
diagrams to model the dynamics of a workflow or an operation. 

A well-structured activity diagram 

• Is focused on communicating one aspect of a system's dynamics. 

• Contains only those elements that are essential to understanding that aspect. 

• Provides detail consistent with its level of abstraction; you expose only those adornments 
that are essential to understanding. 

• Is not so minimalist that it misinforms the reader about important semantics. 

When you draw an activity diagram, 

• Give it a name that communicates its purpose. 

• Start with modeling the primary flow. Address branching, concurrency, and object flow as 
secondary considerations, possibly in separate diagrams. 

• Lay out its elements to minimize lines that cross. 

• Use notes and color as visual cues to draw attention to important features of your 
diagram. 

Part V: Advanced Behavioral Modeling 



 

 

Chapter 20. Events and Signals 
In this chapter 

• Signal events, call events, time events, and change events 

• Modeling a family of signals 

• Modeling exceptions 

• Handling events in active and passive objects 

In the real world, things happen. Not only do things happen, but lots of things may happen at the 
same time, and at the most unexpected times. "Things that happen" are called events, and each 
one represents the specification of a significant occurrence that has a location in time and space. 

In the context of state machines, you use events to model the occurrence of a stimulus that can 
trigger a state transition. Events may include signals, calls, the passing of time, or a change in 
state. 

Events may be synchronous or asynchronous, so modeling events is wrapped up in the modeling 
of processes and threads. 



Getting Started 
A perfectly static system is intensely uninteresting because nothing ever happens. All real 
systems have some dynamic dimension to them, and these dynamics are triggered by things that 
happen externally or internally. At an ATM machine, action is initiated by a user pressing a button 
to start a transaction. In an autonomous robot, action is initiated by the robot bumping into an 
object. In a network router, action is initiated by the detection of an overflow of message buffers. 
In a chemical plant, action is initiated by the passage of time sufficient for a chemical reaction. 

In the UML, each thing that happens is modeled as an event. An event is the specification of a 
significant occurrence that has a location in time and space. A signal, the passing of time, and a 
change of state are asynchronous events, representing events that can happen at arbitrary times. 
Calls are generally synchronous events, representing the invocation of an operation. 

The UML provides a graphical representation of an event, as Figure 20-1 shows. This notation 
permits you to visualize the declaration of events (such as the signal OffHook), as well as the 
use of events to trigger a state transition (such as the signal OffHook, which causes a transition 
from the Active to the Idle state of a telephone). 

Figure 20-1 Events 

 

Terms and Concepts 
An event is the specification of a significant occurrence that has a location in time and space. In 
the context of state machines, an event is an occurrence of a stimulus that can trigger a state 
transition. A signal is a kind of event that represents the specification of an asynchronous 
stimulus communicated between instances. 

Kinds of Events 

Actors are discussed in Chapter 16; systems are discussed in Chapter 31. 

Events may be external or internal. External events are those that pass between the system and 
its actors. For example, the pushing of a button and an interrupt from a collision sensor are both 
examples of external events. Internal events are those that pass among the objects that live 
inside the system. An overflow exception is an example of an internal event. 

The creation and destruction of objects are also kinds of signals, as discussed in Chapter 15. 

In the UML, you can model four kinds of events: signals, calls, the passing of time, and a change 
in state. 

Signals 



A signal represents a named object that is dispatched (thrown) asynchronously by one object and 
then received (caught) by another. Exceptions are supported by most contemporary programming 
languages and are the most common kind of internal signal that you will need to model. 

Classes are discussed in Chapters 4 and 9; generalization is discussed in Chapters 5 and 10. 

Signals have a lot in common with plain classes. For example, signals may have instances, 
although you don't generally need to model them explicitly. Signals may also be involved in 
generalization relationships, permitting you to model hierarchies of events, some of which are 
general (for example, the signal NetworkFailure) and some of which are specific (for example, 
a specialization of NetworkFailure called WarehouseServerFailure). Also as for classes, 
signals may have attributes and operations. 

Note 

The attributes of a signal serve as its parameters. For example, when you send a 
signal such as Collision, you can also specify a value for its attributes as 
parameters, such as Collision(5.3). 

 

State machines are discussed in Chapter 21; interactions are discussed in Chapter 15; 
interfaces are discussed in Chapter 11; dependencies are discussed in Chapter 5; stereotypes 
are discussed in Chapter 6. 

A signal may be sent as the action of a state transition in a state machine or the sending of a 
message in an interaction. The execution of an operation can also send signals. In fact, when you 
model a class or an interface, an important part of specifying the behavior of that element is 
specifying the signals that its operations can send. In the UML, you model the relationship 
between an operation and the events that it can send by using a dependency relationship, 
stereotyped as send. 

In the UML, as Figure 20-2 shows, you model signals (and exceptions) as stereotyped classes. 
You can use a dependency, stereotyped as send, to indicate that an operation sends a 
particular signal. 

Figure 20-2 Signals 

 
Call Events 

State machines are discussed in Chapter 21. 

Just as a signal event represents the occurrence of a signal, a call event represents the dispatch 
of an operation. In both cases, the event may trigger a state transition in a state machine. 



Whereas a signal is an asynchronous event, a call event is, in general, synchronous. This means 
that when an object invokes an operation on another object that has a state machine, control 
passes from the sender to the receiver, the transition is triggered by the event, the operation is 
completed, the receiver transitions to a new state, and control returns to the sender. 

As Figure 20-3 shows, modeling a call event is indistinguishable from modeling a signal event. 
In both cases, you show the event, along with its parameters, as the trigger for a state transition. 

Figure 20-3 Call Events 

 
Note 

Although there are no visual cues to distinguish a signal event from a call event, the 
difference is clear in the backplane of your model. The receiver of an event will know 
the difference, of course (by declaring the operation in its operation list). Typically, a 
signal will be handled by its state machine, and a call event will be handled by a 
method. You can use your tools to navigate from the event to the signal or the 
operation. 

 

Time and Change Events 

A time event is an event that represents the passage of time. As Figure 20-4 shows, in the UML 
you model a time event by using the keyword after followed by some expression that evaluates 
to a period of time. Such expressions can be simple (for example, after 2 seconds) or 
complex (for example, after 1 ms since exiting Idle). Unless you specify it explicitly, 
the starting time of such an expression is the time since entering the current state. 

Figure 20-4 Time and Change Events 



 
A change event is an event that represents a change in state or the satisfaction of some 
condition. As Figure 20-4 shows, in the UML you model a change event by using the keyword 
when followed by some Boolean expression. You can use such expressions to mark an absolute 
time (such as when time = 11:59) or for the continuous test of an expression (for example, 
when altitude < 1000). 

Note 

Although a change event models a condition that is tested continuously, you can 
typically analyze the situation to see when to test the condition at discrete points in 
time. 

 

Sending and Receiving Events 

Processes and threads are discussed in Chapter 22. 

Signal events and call events involve at least two objects: the object that sends the signal or 
invokes the operation, and the object to which the event is directed. Because signals are 
asynchronous, and because asynchronous calls are themselves signals, the semantics of events 
interact with the semantics of active objects and passive objects. 

Instances are discussed in Chapter 13. 

Any instance of any class can send a signal to or invoke an operation of a receiving object. When 
an object sends a signal, the sender dispatches the signal and then continues along its flow of 
control, not waiting for any return from the receiver. For example, if an actor interacting with an 
ATM system sends the signal pushButton, the actor may continue along its way independent 
of the system to which the signal was sent. In contrast, when an object calls an operation, the 
sender dispatches the operation and then waits for the receiver. For example, in a trading 
system, an instance of the class Trader might invoke the operation confirmTransaction on 
some instance of the class Trade, thereby affecting the state of the Trade object. If this is a 
synchronous call, the Trader object will wait until the operation is finished. 



Note 

In some situations, you may want to show one object sending a signal to a set of 
objects (multicasting) or to any object in the system that might be listening 
(broadcasting). To model multicasting, you'd show an object sending a signal to a 
collection containing a set of receivers. To model broadcasting, you'd show an object 
sending a signal to another object that represents the system as a whole. 

 

State machines are discussed in Chapter 21; active objects are discussed in Chapter 22. 

Any instance of any class can receive a call event or a signal. If this is a synchronous call event, 
then the sender and the receiver are in a rendezvous for the duration of the operation. This 
means that the flow of control of the sender is put in lock step with the flow of control of the 
receiver until the activity of the operation is carried out. If this is a signal, then the sender and 
receiver do not rendezvous: the sender dispatches the signal but does not wait for a response 
from the receiver. In either case, this event may be lost (if no response to the event is specified), 
it may trigger the receiver's state machine (if there is one), or it may just invoke a normal method 
call. 

Operations are discussed in Chapter 4; extra class compartments are discussed in Chapter 4. 

Interfaces are discussed in Chapter 11; asynchronous operations are discussed in Chapter 22. 

In the UML, you model the call events that an object may receive as operations on the class of 
the object. In the UML, you model the named signals that an object may receive by naming them 
in an extra compartment of the class, as shown in Figure 20-5. 

Figure 20-5 Signals and Active Classes. 

 
Note 

You can also attach named signals to an interface in this same manner. In either case, 
the signals you list in this extra compartment are not the declarations of a signal, but 



only the use of a signal. Signals that are asynchronous operations are listed in the 
normal operation compartment of the class. 

Common Modeling Techniques 

Modeling a Family of Signals 

Generalization is discussed in Chapters 5 and 10. 

In most event-driven systems, signal events are hierarchical. For example, an autonomous robot 
might distinguish between external signals, such as a Collision, and internal ones, such as a 
HardwareFault. External and internal signals need not be disjoint, however. Even within these 
two broad classifications, you might find specializations. For example, HardwareFault signals 
might be further specialized as BatteryFault and MovementFault. Even these might be 
further specialized, such as MotorStall, a kind of MovementFault. 

State machines are discussed in Chapter 21. 

By modeling hierarchies of signals in this manner, you can specify polymorphic events. For 
example, consider a state machine with a transition triggered only by the receipt of a 
MotorStall. As a leaf signal in this hierarchy, the transition can be triggered only by that 
signal, so it is not polymorphic. In contrast, suppose you modeled the state machine with a 
transition triggered by the receipt of a HardwareFault. In this case, the transition is 
polymorphic and can be triggered by a HardwareFault or any of its specializations, including 
BatteryFault, MovementFault, and MotorStall. 

To model a family of signals, 

• Consider all the different kinds of signals to which a given set of active objects may 
respond. 

• Look for the common kinds of signals and place them in a generalization/specialization 
hierarchy using inheritance. Elevate more general ones and lower more specialized ones. 

• Look for the opportunity for polymorphism in the state machines of these active objects. 
Where you find polymorphism, adjust the hierarchy as necessary by introducing 
intermediate abstract signals. 

Abstract classes are discussed in Chapter 5. 

Figure 20-6 models a family of signals that may be handled by an autonomous robot. Note that 
the root signal (RobotSignal) is abstract, which means that there may be no direct instances. 
This signal has two immediate concrete specializations (Collision and HardwareFault), one 
of which (HardwareFault) is further specialized. Note that the Collision signal has one 
parameter. 

Figure 20-6 Modeling Families of Signals 



 
Modeling Exceptions 

Classes are discussed in Chapters 4 and 9; interfaces are discussed in Chapter 11. 

An important part of visualizing, specifying, and documenting the behavior of a class or an 
interface is specifying the exceptions that its operations can raise. If you are handed a class or an 
interface, the operations you can invoke will be clear, but the exceptions that each operation may 
raise will not be clear unless you model them explicitly. 

Stereotypes are discussed in Chapter 6. 

In the UML, exceptions are kinds of signals, which you model as stereotyped classes. Exceptions 
may be attached to specification operations. Modeling exceptions is somewhat the inverse of 
modeling a general family of signals. You model a family of signals primarily to specify the kinds 
of signals an active object may receive; you model exceptions primarily to specify the kinds of 
exceptions that an object may throw through its operations. 

To model exceptions, 

• For each class and interface, and for each operation of such elements, consider the 
exceptional conditions that may be raised. 

• Arrange these exceptions in a hierarchy. Elevate general ones, lower specialized ones, 
and introduce intermediate exceptions, as necessary. 

• For each operation, specify the exceptions that it may raise. You can do so explicitly (by 
showing send dependencies from an operation to its exceptions) or you can put this in 
the operation's specification. 

Template classes are discussed in Chapter 9. 



Figure 20-7 models a hierarchy of exceptions that may be raised by a standard library of 
container classes, such as the template class Set. This hierarchy is headed by the abstract 
signal Exception and includes three specialized exceptions: Duplicate, Overflow, and 
Underflow. As shown, the add operation raises Duplicate and Overflow exceptions, and 
the remove operation raises only the Underflow exception. Alternatively, you could have put 
these dependencies in the background by naming them in each operation's specification. Either 
way, by knowing which exceptions each operation may send, you can create clients that use the 
Set class correctly. 

Figure 20-7 Modeling Exceptions 

 

Hints and Tips 
When you model an event, 

• Build hierarchies of signals so that you exploit the common properties of related signals. 

• Don't use sending signals, and especially sending exceptions, as a replacement for 
normal flow of control. 

• Be sure you have a suitable state machine behind each element that may receive the 
event. 

• Be sure to model not only those elements that may receive events, but also those 
elements that may send them. 

When you draw an event in the UML, 

• In general, model hierarchies of events explicitly, but model their use in the backplane of 
each class or operation that sends or receives such an event. 

Chapter 21. State Machines 
In this chapter 

• States, transitions, and activities 



• Modeling the lifetime of an object 

• Creating well-structured algorithms 

Interactions are discussed in Chapter 15; objects are discussed in Chapter 13. 

Using an interaction, you can model the behavior of a society of objects that work together. Using 
a state machine, you can model the behavior of an individual object. A state machine is a 
behavior that specifies the sequences of states an object goes through during its lifetime in 
response to events, together with its responses to those events. 

Classes are discussed in Chapters 4 and 9; use cases re discussed in Chapter 16; systems 
are discussed in Chapter 31; activity diagrams are discussed in Chapter 19; statechart 
diagrams are discussed in Chapter 24. 

You use state machines to model the dynamic aspects of a system. For the most part, this 
involves specifying the lifetime of the instances of a class, a use case, or an entire system. These 
instances may respond to such events as signals, operations, or the passing of time. When an 
event occurs, some activity will take place, depending on the current state of the object. An 
activity is an ongoing nonatomic execution within a state machine. Activities ultimately result in 
some action, which is made up of executable atomic computations that result in a change in state 
of the model or a return of a value. The state of an object is a condition or situation during the life 
of an object during which it satisfies some condition, performs some activity, or waits for some 
event. 

You can visualize a state machine in two ways: by emphasizing the flow of control from activity to 
activity (using activity diagrams), or by emphasizing the potential states of the objects and the 
transitions among those states (using statechart diagrams). 

Well-structured state machines are like well-structured algorithms: They are efficient, simple, 
adaptable, and understandable. 

Getting Started 
Consider the life of your home's thermostat on one, crisp fall day. 

In the wee hours of the morning, things are pretty quiet for the humble thermostat. The 
temperature of the house is stable and, save for a rogue gust of wind or a passing storm, the 
temperature outside the house is stable, too. Toward dawn, however, things get more interesting. 
The sun starts to peek over the horizon, raising the ambient temperature slightly. Family 
members start to wake; someone might tumble out of bed and twist the thermostat's dial. Both of 
these events are significant to the home's heating and cooling system. The thermostat starts 
behaving like all good thermostats should, by commanding the home's heater (to raise the inside 
temperature) or air conditioner (to lower the inside temperature). 

Once everyone has left for work or school, things get quiet, and the temperature of the house 
stabilizes once again. However, an automatic program might then cut in, commanding the 
thermostat to lower the temperature to save on electricity and gas. The thermostat goes back to 
work. Later in the day, the program comes alive again, this time commanding the thermostat to 
raise the temperature so that the family can come home to a cozy house. 

In the evening, with the home filled with warm bodies and heat from cooking, the thermostat has 
a lot of work to do to keep the temperature even while it runs the heater and cooler efficiently. 

Finally, at night, things return to a quiet state. 



A number of software-intensive systems behave just like that thermostat. A pacemaker runs 
continuously but adapts to changes in blood pressure or activity. A network router runs 
continuously, as well, silently guiding asynchronous streams of bits, sometimes adapting its 
behavior in response to commands from the network administrator. A cell phone works on 
demand, responding to input from the user and to messages from the local cells. 

Modeling thestructural aspects of a system is discussed in Sections 2 and 3. 

In the UML, you model the static aspects of a system by using such elements as class diagrams 
and object diagrams. These diagrams let you visualize, specify, construct, and document the 
things that live in your system, including classes, interfaces, components, nodes, and use cases 
and their instances, together with the way those things sit in relationship to one another. 

You can also model the dynamic aspects of a system by using interactions, as discussed in 
Chapter 15; events are discussed in Chapter 20. 

In the UML, you model the dynamic aspects of a system by using state machines. Whereas an 
interaction models a society of objects that work together to carry out some action, a state 
machine models the lifetime of a single object, whether it is an instance of a class, a use case, or 
even an entire system. In the life of an object, it may be exposed to a variety of events, such as a 
signal, the invocation of an operation, the creation or destruction of the object, the passing of 
time, or the change in some condition. In response to these events, the object reacts with some 
action, which represents an atomic computation that results in a change in state of the object or 
the return of a value. The behavior of such an object is therefore affected by the past. An object 
may receive an event, respond with an action, then change its state. An object may receive 
another event, and its response may be different, depending on its current state in response to 
the previous event. 

Activity diagrams are discussed in Chapter 19; statechart diagrams are discussed in Chapter 
24. 

You use state machines to model the behavior of any modeling element, although, most 
commonly, that will be a class, a use case, or an entire system. State machines may be 
visualized in two ways. First, using activity diagrams, you can focus on the activities that take 
place within the object. Second, using statechart diagrams, you can focus on the event-ordered 
behavior of an object, which is especially useful in modeling reactive systems. 

The UML provides a graphical representation of states, transitions, events, and actions, as 
Figure 21-1 shows. This notation permits you to visualize the behavior of an object in a way that 
lets you emphasize the important elements in the life of that object. 

Figure 21-1 State Machines 



 

Terms and Concepts 
A state machine is a behavior that specifies the sequences of states an object goes through 
during its lifetime in response to events, together with its responses to those events. A state is a 
condition or situation during the life of an object during which it satisfies some condition, performs 
some activity, or waits for some event. An event is the specification of a significant occurrence 
that has a location in time and space. In the context of state machines, an event is an occurrence 
of a stimulus that can trigger a state transition. A transition is a relationship between two states 
indicating that an object in the first state will perform certain actions and enter the second state 
when a specified event occurs and specified conditions are satisfied. An activity is ongoing 
nonatomic execution within a state machine. An action is an executable atomic computation that 
results in a change in state of the model or the return of a value. Graphically, a state is rendered 
as a rectangle with rounded corners. A transition is rendered as a solid directed line. 

Context 

Objects are discussed in Chapter 13; messages are discussed in Chapter 15. 

Every object has a lifetime. On creation, an object is born; on destruction, an object ceases to 
exist. In between, an object may act on other objects (by sending them messages), as well as be 
acted on (by being the target of a message). In many cases, these messages will be simple, 
synchronous operation calls. For example, an instance of the class Customer might invoke the 
operation getAccountBalance on an instance of the class BankAccount. Objects such as 
these don't need a state machine to specify their behavior because their current behavior does 
not depend on their past. 

Signals are discussed in Chapter 20. 

In other kinds of systems, you'll encounter objects that must respond to signals, which are 
asynchronous stimuli communicated between instances. For example, a cellular phone must 
respond to random phone calls (from other phones), keypad events (from the customer initiating 
a phone call), and to events from the network (when the phone moves from one call to another). 
Similarly, you'll encounter objects whose current behavior depends on their past behavior. For 
example, the behavior of an air-to-air missile guidance system will depend on its current state, 
such as NotFlying (it's not a good idea to launch a missile while it's attached to an aircraft 
that's still sitting on the ground) or Searching (you shouldn't arm the missile until you have a 
good idea what it's going to hit). 



Active objects are discussed in Chapter 22; modeling reactive systems is discussed in Chapter 
24; use cases and actors are discussed in Chapter 16; interactions are discussed in Chapter 
15; interfaces are discussed in Chapter 11. 

The behavior of objects that must respond to asynchronous stimulus or whose current behavior 
depends on their past is best specified by using a state machine. This encompasses instances of 
classes that can receive signals, including many active objects. In fact, an object that receives a 
signal but has no state machine will simply ignore that signal. You'll also use state machines to 
model the behavior of entire systems, especially reactive systems, which must respond to signals 
from actors outside the system. 

Note 

Most of the time, you'll use interactions to model the behavior of a use case, but you 
can also apply state machines for the same purpose. Similarly, you can apply state 
machines to model the behavior of an interface. Although an interface may not have 
any direct instances, a class that realizes such an interface may. Such a class must 
conform to the behavior specified by the state machine of this interface. 

 

States 

A state is a condition or situation during the life of an object during which it satisfies some 
condition, performs some activity, or waits for some event. An object remains in a state for a finite 
amount of time. For example, a Heater in a home might be in any of four states: Idle (waiting 
for a command to start heating the house), Activating (its gas is on, but it's waiting to come up 
to temperature), Active (its gas and blower are both on), and ShuttingDown (its gas is off but 
its blower is on, flushing residual heat from the system). 

You can visualize the state of an object in an interaction, as discussed in Chapter 13; a state 
name must be unique within its enclosing state, in conformance with the rules discussed in 
Chapter 12; the last four parts of a state are discussed in later sections of this chapter. 

When an object's state machine is in a given state, the object is said to be in that state. For 
example, an instance of Heater might be Idle or perhaps ShuttingDown. 

Astate has several parts. 

1. Name  A textual string that distinguishes the state from other states; a state may be 
anonymous, meaning that it has no name 

2. Entry/exit 
actions  

Actions executed on entering and exiting the state, respectively 

3. Internal 
transitions  

Transitions that are handled without causing a change in state 

4. Substates  The nested structure of a state, involving disjoint (sequentially active) or 
concurrent (concurrently active) substates 

5. Deferred 
events  

A list of events that are not handled in that state but, rather, are postponed and 
queued for handling by the object in another state 

Note 

A state name may be text consisting of any number of letters, numbers, and certain 
punctuation marks (except for marks such as the colon) and may continue over 
several lines. In practice, state names are short nouns or noun phrases drawn from 



the vocabulary of the system you are modeling. Typically, you capitalize the first letter 
of every word in a state name, as in Idle or ShuttingDown. 

 

As Figure 21-2 shows, you represent a state as a rectangle with rounded corners. 

Figure 21-2 States 

 
Initial and Final States   

As the figure shows, there are two special states that may be defined for an object's state 
machine. First, there's the initial state, which indicates the default starting place for the state 
machine or substate. An initial state is represented as a filled black circle. Second, there's the 
final state, which indicates that the execution of the state machine or the enclosing state has 
been completed. A final state is represented as a filled black circle surrounded by an unfilled 
circle. 

Note 

Initial and final states are really pseudostates. Neither may have the usual parts of a 
normal state, except for a name. A transition from an initial state to a final state may 
have the full complement of features, including a guard condition and action (but not a 
trigger event). 

 

Transitions 

A transition is a relationship between two states indicating that an object in the first state will 
perform certain actions and enter the second state when a specified event occurs and specified 
conditions are satisfied. On such a change of state, the transition is said to fire. Until the transition 
fires, the object is said to be in the source state; after it fires, it is said to be in the target state. For 
example, a Heater might transition from the Idle to the Activating state when an event such 
as tooCold (with the parameter desiredTemp) occurs. 

A transition has five parts. 

Events are discussed in Chapter 20. 

1. Source 
state  

The state affected by the transition; if an object is in the source state, an outgoing 
transition may fire when the object receives the trigger event of the transition and if 
the guard condition, if any, is satisfied 



2. Event 
trigger  

The event whose reception by the object in the source state makes the transition 
eligible to fire, providing its guard condition is satisfied 

3. Guard 
condition  

A Boolean expression that is evaluated when the transition is triggered by the 
reception of the event trigger; if the expression evaluates True, the transition is 
eligible to fire; if the expression evaluates False, the transition does not fire and if 
there is no other transition that could be triggered by that same event, the event is 
lost 

4. Action  An executable atomic computation that may directly act on the object that owns the 
state machine, and indirectly on other objects that are visible to the object 

5. Target 
state  

The state that is active after the completion of the transition 

Forking andjoining are also discussed in Chapter 19. 

As Figure 21-3 shows, a transition is rendered as a solid directed line from the source to the 
target state. A self-transition is a transition whose source and target states are the same. 

Figure 21-3 Transitions 

 
Note 

A transition may have multiple sources (in which case, it represents a join from 
multiple concurrent states) as well as multiple targets (in which case, it represents a 
fork to multiple concurrent states). 

 
Events are discussed in Chapter 20. 

Event Trigger   

An event is the specification of a significant occurrence that has a location in time and space. In 
the context of state machines, an event is an occurrence of a stimulus that can trigger a state 
transition. As shown in the previous figure, events may include signals, calls, the passing of time, 



or a change in state. A signal or a call may have parameters whose values are available to the 
transition, including expressions for the guard condition and action. 

Specifying a family of signals is discussed in Chapter 20; multiple, nonoverlapping guard 
conditions form a branch, as discussed in Chapter 19. 

It is also possible to have a triggerless transition, represented by a transition with no event trigger. 
A triggerless transition• also called a completion transition• is triggered implicitly when its source 
state has completed its activity. 

Note 

An event trigger may be polymorphic. For example, if you've specified a family of 
signals, then a transition whose trigger event is S can be triggered by S, as well as by 
any children of S. 

 
Guard   

As the previous figure shows, a guard condition is rendered as a Boolean expression enclosed in 
square brackets and placed after the trigger event. A guard condition is evaluated only after the 
trigger event for its transition occurs. Therefore, it's possible to have multiple transitions from the 
same source state and with the same event trigger, as long as those conditions don't overlap. 

Change events are discussed in Chapter 20. 

A guard condition is evaluated just once for each transition at the time the event occurs, but it 
may be evaluated again if the transition is retriggered. Within the Boolean expression, you can 
include conditions about the state of an object (for example, the expression aHeater in Idle, 
which evaluates True if the Heater object is currently in the Idle state). 

Note 

Although a guard condition is evaluated only once each time its transition triggers, a 
change event is potentially evaluated continuously. 

 

Actions are discussed in Chapter 15. 

Action   

An action is an executable atomic computation. Actions may include operation calls (to the object 
that owns the state machine, as well as to other visible objects), the creation or destruction of 
another object, or the sending of a signal to an object. As the previous figure shows, there's a 
special notation for sending a signal• the signal name is prefixed with the keyword send as a 
visual cue. 

Activities are discussed in a later section of this chapter; dependencies are discussed in 
Chapters 5 and 10. 

An action is atomic, meaning that it cannot be interrupted by an event and therefore runs to 
completion. This is in contrast to an activity, which may be interrupted by other events. 



Note 

You can explicitly show the object to which a signal is sent by using a dependency 
stereotyped as send, whose source is the state and whose target is the object. 

 

Advanced States and Transitions 

You can model a wide variety of behavior using only the basic features of states and transitions in 
the UML. Using these features, you'll end up with flat state machines, which means that your 
behavioral models will consist of nothing more than arcs (transitions) and vertices (states). 

However, the UML's state machines have a number of advanced features that help you to 
manage complex behavioral models. These features often reduce the number of states and 
transitions you'll need, and they codify a number of common and somewhat complex idioms you'd 
otherwise encounter using flat state machines. Some of these advanced features include entry 
and exit actions, internal transitions, activities, and deferred events. 

Entry and Exit Actions   

In a number of modeling situations, you'll want to dispatch the same action whenever you enter a 
state, no matter which transition led you there. Similarly, when you leave a state, you'll want to 
dispatch the same action no matter which transition led you away. For example, in a missile 
guidance system, you might want to explicitly announce the system is onTrack whenever it's in 
the Tracking state, and offTrack whenever it's out of the state. Using flat state machines, you 
can achieve this effect by putting those actions on every entering and exiting transition, as 
appropriate. However, that's somewhat error prone; you have to remember to add these actions 
every time you add a new transition. Furthermore, modifying this action means that you have to 
touch every neighboring transition. 

As Figure 21-4 shows, the UML provides a shorthand for this idiom. In the symbol for the state, 
you can include an entry action (marked by the keyword event entry) and an exit action (marked 
by the keyword event exit), together with an appropriate action. Whenever you enter the state, 
its entry action is dispatched; whenever you leave the state, its exit action is dispatched. 

Figure 21-4 Advanced States and Transitions 

 
Note 

Entry and exit actions may not have arguments or guard conditions. However, the 
entry action at the top level of a state machine for a class may have parameters that 
represent the arguments that the machine receives when the object is created. 



 
Internal Transitions   

Once inside a state, you'll encounter events you'll want to handle without leaving the state. These 
are called internal transitions, and they are subtly different from self-transitions. In a self-
transition, such as you see in Figure 21-3, an event triggers the transition, you leave the state, 
an action (if any) is dispatched, and then you reenter the same state. Because this transition exits 
and then enters the state, a self-transition dispatches the state's exit action, then it dispatches the 
action of the self-transition, and finally, it dispatches the state's entry action. However, suppose 
you want to handle the event but don't want to fire the state's entry and exit actions. Using flat 
state machines, you can achieve that effect, but you have to be diligent about remembering which 
of a state's transitions have these entry and exit actions and which do not. 

As Figure 21-4 shows, the UML provides a shorthand for this idiom, as well (for example, for the 
event newTarget). In the symbol for the state, you can include an internal transition (marked by 
an event). Whenever you are in the state and that event is triggered, the corresponding action is 
dispatched without leaving and then reentering the state. Therefore, the event is handled without 
dispatching the state's exit and then entry actions. 

Note 

Internal transitions may have events with parameters and guard conditions. As such, 
internal transitions are essentially interrupts. 

 
Activities   

When an object is in a state, it generally sits idle, waiting for an event to occur. Sometimes, 
however, you may wish to model an ongoing activity. While in a state, the object does some work 
that will continue until it is interrupted by an event. For example, if an object is in the Tracking 
state, it might followTarget as long as it is in that state. As Figure 21-4 shows, in the UML, 
you use the special do transition to specify the work that's to be done inside a state after the entry 
action is dispatched. The activity of a do transition might name another state machine (such as 
followTarget). You can also specify a sequence of actions• for example, do / op1(a); op2(b); 
op3(c). Actions are never interruptible, but sequences of actions are. In between each action 
(separated by the semicolon), events may be handled by the enclosing state, which results in 
transitioning out of the state. 

Events are discussed in Chapter 20. 

Deferred Events   

Consider a state such as Tracking. As illustrated in Figure 21-3, suppose there's only one 
transition leading out of this state, triggered by the event contact. While in the state 
Tracking, any events other than contact and other than those handled by its substates will 
be lost. That means that the event may occur, but it will be postponed and no action will result 
because of the presence of that event. 

In every modeling situation, you'll want to recognize some events and ignore others. You include 
those you want to recognize as the event triggers of transitions; those you want to ignore you just 
leave out. However, in some modeling situations, you'll want to recognize some events but 
postpone a response to them until later. For example, while in the Tracking state, you may 



want to postpone a response to signals such as selfTest, perhaps sent by some maintenance 
agent in the system. 

In the UML, you can specify this behavior by using deferred events. A deferred event is a list of 
events whose occurrence in the state is postponed until a state in which the listed events are not 
deferred becomes active, at which time they occur and may trigger transitions as if they had just 
occurred. As you can see in the previous figure, you can specify a deferred event by listing the 
event with the special action defer. In this example, selfTest events may happen while in the 
Tracking state, but they are held until the object is in the Engaging state, at which time it 
appears as if they just occurred. 

Note 

The implementation of deferred events requires the presence of an internal queue of 
events. If an event happens but is listed as deferred, it is queued. Events are taken off 
this queue as soon as the object enters a state that does not defer these events. 

 

Substates 

These advanced features of states and transitions solve a number of common state machine 
modeling problems. However, there's one more feature of the UML's state machines•
substates• that does even more to help you simplify the modeling of complex behaviors. A 
substate is a state that's nested inside another one. For example, a Heater might be in the 
Heating state, but also while in the Heating state, there might be a nested state called 
Activating. In this case, it's proper to say that the object is both Heating and Activating. 

Composite states have a nested structure similar to composition, as discussed in Chapters 5 
and 10. 

A simple state is a state that has no substructure. A state that has substates•  that is, nested 
states• is called a composite state. A composite state may contain either concurrent (orthogonal) 
or sequential (disjoint) substates. In the UML, you render a composite state just as you do a 
simple state, but with an optional graphic compartment that shows a nested state machine. 
Substates may be nested to any level. 

Sequential Substates   

Consider the problem of modeling the behavior of an ATM. There are three basic states in which 
this system might be: Idle (waiting for customer interaction), Active (handling a customer's 
transaction), and Maintenance (perhaps having its cash store replenished). While Active, the 
behavior of the ATM follows a simple path: Validate the customer, select a transaction, process 
the transaction, and then print a receipt. After printing, the ATM returns to the Idle state. You 
might represent these stages of behavior as the states Validating, Selecting, 
Processing, and Printing. It would even be desirable to let the customer select and 
process multiple transactions after Validating the account and before Printing a final 
receipt. 

The problem here is that, at any stage in this behavior, the customer might decide to cancel the 
transaction, returning the ATM to its Idle state. Using flat state machines, you can achieve that 
effect, but it's quite messy. Because the customer might cancel the transaction at any point, you'd 
have to include a suitable transition from every state in the Active sequence. That's messy 
because it's easy to forget to include these transitions in all the right places, and many such 



interrupting events means you end up with a multitude of transitions zeroing in on the same target 
state from various sources, but with the same event trigger, guard condition, and action. 

Using sequential substates, there's a simpler way to model this problem, as Figure 21-5 shows. 
Here, the Active state has a substructure, containing the substates Validating, 
Selecting, Processing, and Printing. The state of the ATM changes from Idle to 
Active when the customer enters a credit card in the machine. On entering the Active state, 
the entry action readCard is performed. Starting with the initial state of the substructure, control 
passes to the Validating state, then to the Selecting state, and then to the Processing 
state. After Processing, control may return to Selecting (if the customer has selected 
another transaction) or it may move on to Printing. After Printing, there's a triggerless 
transition back to the Idle state. Notice that the Active state has an exit action, which ejects 
the customer's credit card. 

Figure 21-5 Sequential Substates 

 
Notice also the transition from the Active state to the Idle state, triggered by the event 
cancel. In any substate of Active, the customer might cancel the transaction, and that returns 
the ATM to the Idle state (but only after ejecting the customer's credit card, which is the exit 
action dispatched on leaving the Active state, no matter what caused a transition out of that 
state). Without substates, you'd need a transition triggered by cancel on every substructure 
state. 

Substates such as Validating and Processing are called sequential, or disjoint, substates. 
Given a set of disjoint substates in the context of an enclosing composite state, the object is said 
to be in the composite state and in only one of those substates (or the final state) at a time. 
Therefore, sequential substates partition the state space of the composite state into disjoint 
states. 



From a source outside an enclosing composite state, a transition may target the composite state 
or it may target a substate. If its target is the composite state, the nested state machine must 
include an initial state, to which control passes after entering the composite state and after 
dispatching its entry action (if any). If its target is the nested state, control passes to the nested 
state, after dispatching the entry action (if any) of the composite state and then the entry action (if 
any) of the substate. 

A transition leading out of a composite state may have as its source the composite state or a 
substate. In either case, control first leaves the nested state (and its exit action, if any, is 
dispatched), then it leaves the composite state (and its exit action, if any, is dispatched). A 
transition whose source is the composite state essentially cuts short (interrupts) the activity of the 
nested state machine. 

Note 

A nested sequential state machine may have at most one initial state and one final 
state. 

 
History States   

A state machine describes the dynamic aspects of an object whose current behavior depends on 
its past. A state machine in effect specifies the legal ordering of states an object may go through 
during its lifetime. 

Unless otherwise specified, when a transition enters a composite state, the action of the nested 
state machine starts over again at its initial state (unless, of course, the transition targets a 
substate directly). However, there are times you'd like to model an object so that it remembers 
the last substate that was active prior to leaving the composite state. For example, in modeling 
the behavior of an agent that does an unattended backup of computers across a network, you'd 
like it to remember where it was in the process if it ever gets interrupted by, for example, a query 
from the operator. 

Using flat state machines, you can model this, but it's messy. For each sequential substate, you'd 
need to have its exit action post a value to some variable local to the composite state. Then the 
initial state to this composite state would need a transition to every substate with a guard 
condition, querying the variable. In this way, leaving the composite state would cause the last 
substate to be remembered; entering the composite state would transition to the proper substate. 
That's messy because it requires you to remember to touch every substate and to set an 
appropriate exit action. It leaves you with a multitude of transitions fanning out from the same 
initial state to different target substates with very similar (but different) guard conditions. 

In the UML, a simpler way to model this idiom is by using history states. A history state allows a 
composite state that contains sequential substates to remember the last substate that was active 
in it prior to the transition from the composite state. As Figure 21-6 shows, you represent a 
shallow history state as a small circle containing the symbol H. 

Figure 21-6 History State 



 
If you want a transition to activate the last substate, you show a transition from outside the 
composite state directly to the history state. The first time you enter a composite state, it has no 
history. This is the meaning of the single transition from the history state to a sequential substate 
such as Collecting. The target of this transition specifies the initial state of the nested state 
machine the first time it is entered. Continuing, suppose that while in the BackingUp state and 
the Copying state, the query event is posted. Control leaves Copying and BackingUp 
(dispatching their exit actions as necessary) and returns to the Command state. When the action 
of Command completes, the triggerless transition returns to the history state of the composite 
state BackingUp. This time, because there is a history to the nested state machine, control 
passes back to the Copying state• thus bypassing the Collecting state• because Copying 
was the last substate active prior to the transition from BackingUp. 

Note 

the symbol H designates a shallow history, which remembers only the history of the 
immediate nested state machine. You can also specify deep history, shown as a small 
circle containing the symbol H*. Deep history remembers down to the innermost 
nested state at any depth. If you have only one level of nesting, shallow and deep 
history states are semantically equivalent. If you have more than one level of nesting, 
shallow history remembers only the outermost nested state; deep history remembers 
the innermost nested state at any depth. 

 
In either case, if a nested state machine reaches a final state, it loses its stored history and 
behaves as if it had not yet been entered for the first time. 

Active objects are discussed in Chapter 22. 

Concurrent Substates   



Sequential substates are the most common kind of nested state machine you'll encounter. In 
certain modeling situations, however, you'll want to specify concurrent substates. These 
substates let you specify two or more state machines that execute in parallel in the context of the 
enclosing object. 

Note 

Another way to model concurrency is by using active objects. Thus, rather than 
partitioning one object's state machine into two (or more) concurrent substates, you 
could define two active objects, each of which is responsible for the behavior of one of 
the concurrent substates. If the behavior of one of these concurrent flows is affected 
by the state of the other, you'll want to model this using concurrent substates. If the 
behavior of one of these concurrent flows is affected by messages sent to and from 
the other, you'll want to model this using active objects. If there's little or no 
communication between the concurrent flows, then the approach you choose is a 
matter of taste, although most of the time, using active objects makes your design 
decisions more obvious. 

 

Forking andjoining are discussed in Chapter 19. 

For example, Figure 21-7 shows an expansion of the Maintenance state from Figure 21-5. 
Maintenance is decomposed into two concurrent substates, Testing and Commanding, 
shown by nesting them in the Maintenance state but separating them from one another with a 
dashed line. Each of these concurrent substates is further decomposed into sequential substates. 
When control passes from the Idle to the Maintenance state, control then forks to two 
concurrent flows• the enclosing object will be in the Testing state and the Commanding state. 
Furthermore, while in the Commanding state, the enclosing object will be in the Waiting or the 
Command state. 

Figure 21-7 Concurrent Substates 

 



Note 

This is what distinguishes sequential substates and concurrent substates. Given two 
or more sequential substates at the same level, an object will be in one of those 
substates or the other. Given two or more concurrent substates at the same level, an 
object will be in a sequential state from each one of the concurrent substates. 

 
Execution of these two concurrent substates continues in parallel. Eventually, each nested state 
machine reaches its final state. If one concurrent substate reaches its final state before the other, 
control in that substate waits at its final state. When both nested state machines reach their final 
state, control from the two concurrent substates joins back into one flow. 

Whenever there's a transition to a composite state decomposed into concurrent substates, 
control forks into as many concurrent flows as there are concurrent substates. Similarly, 
whenever there's a transition from a composite substate decomposed into concurrent substates, 
control joins back into one flow. This holds true in all cases. If all concurrent substates reach their 
final state, or if there is an explicit transition out of the enclosing composite state, control joins 
back into one flow. 

Note 

A nested concurrent state machine does not have an initial, final, or history state. 
However, the sequential substates that compose a concurrent state may have these 
features. 

Common Modeling Techniques 

Modeling the Lifetime of an Object 

Objects are discussed in Chapter 13;classes are discussed in Chapters 4 and 9; use cases 
are discussed in Chapter 16;systems are discussed in Chapter 31;interactions are discussed 
in Chapter 15. 

The most common purpose for which you'll use state machines is to model the lifetime of an 
object, especially instances of classes, use cases, and the system as a whole. Whereas 
interactions model the behavior of a society of objects working together, a state machine models 
the behavior of a single object over its lifetime, such as you'll find with user interfaces, controllers, 
and devices. 

When you model the lifetime of an object, you essentially specify three things: the events to which 
the object can respond, the response to those events, and the impact of the past on current 
behavior. Modeling the lifetime of an object also involves deciding on the order in which the object 
can meaningfully respond to events, starting at the time of the object's creation and continuing 
until its destruction. 

To model the lifetime of an object, 

Collaborations are discussed in Chapter 27. 

Pre- and postconditions are discussed in Chapter 10; interfaces are discussed in Chapter 11. 

• Set the context for the state machine, whether it is a class, a use case, or the system as 
a whole. 



1. If the context is a class or a use case, collect the neighboring classes, including 
any parents of the class and any classes reachable by associations or 
dependences. These neighbors are candidate targets for actions and are 
candidates for including in guard conditions. 

2. f the context is the system as a whole, narrow your focus to one behavior of the 
system. Theoretically, every object in the system may be a participant in a model 
of the system's lifetime, and except for the most trivial systems, a complete 
model would be intractable. 

• Establish the initial and final states for the object. To guide the rest of your model, 
possibly state the pre- and postconditions of the initial and final states, respectively. 

• Decide on the events to which this object may respond. If already specified, you'll find 
these in the object's interfaces; if not already specified, you'll have to consider which 
objects may interact with the object in your context, and then which events they may 
possibly dispatch. 

• Starting from the initial state to the final state, lay out the top-level states the object may 
be in. Connect these states with transitions triggered by the appropriate events. Continue 
by adding actions to these transitions. 

• Identify any entry or exit actions (especially if you find that the idiom they cover is used in 
the state machine). 

• Expand these states as necessary by using substates. 

• Check that all events mentioned in the state machine match events expected by the 
interface of the object. Similarly, check that all events expected by the interface of the 
object are handled by the state machine. Finally, look to places where you explicitly want 
to ignore events. 

• Check that all actions mentioned in the state machine are sustained by the relationships, 
methods, and operations of the enclosing object. 

• Trace through the state machine, either manually or by using tools, to check it against 
expected sequences of events and their responses. Be especially diligent in looking for 
unreachable states and states in which the machine may get stuck. 

• After rearranging your state machine, check it against expected sequences again to 
ensure that you have not changed the object's semantics. 

For example, Figure 21-8 shows the state machine for the controller in a home security system, 
which is responsible for monitoring various sensors around the perimeter of the house. 

Figure 21-8 Modeling the Lifetime of An Object 



 
In the lifetime of this controller class, there are four main states: Initializing (the controller is 
starting up), Idle (the controller is ready and waiting for alarms or commands from the user), 
Command (the controller is processing commands from the user), and Active (the controller is 
processing an alarm condition). When the controller object is first created, it moves first to the 
Initializing state and then unconditionally to the Idle state. The details of these two states 
are not shown, other than the self-transition with the time event in the Idle state. This kind of 
time event is common in embedded systems, which often have a heartbeat timer that causes a 
periodic check of the system's health. 

Control passes from the Idle state to the Active state on receipt of an alarm event (which 
includes the parameter s, identifying the sensor that was tripped). On entering the Active state, 
setAlarm is dispatched as the entry action, and control then passes first to the Checking state 
(validating the alarm), then to the Calling state (calling the alarm company to register the 
alarm), and finally to the Waiting state. The Active and Waiting states are exited only upon 
clearing the alarm, or by the user signaling the controller for attention, presumably to issue 
a command. 

Notice that there is no final state. That, too, is common in embedded systems, which are intended 
to run continuously. 

Hints and Tips 



When you model state machines in the UML, remember that every state machine represents the 
dynamic aspects of an individual object, typically representing an instance of a class, a use case, 
or the system as a whole. A well-structured state machine 

• Is simple and therefore should not contain any superfluous states or transitions. 

• Has a clear context and therefore may have access to all the objects visible to its 
enclosing object (these neighbors should be used only as necessary to carry out the 
behavior specified by the state machine). 

• Is efficient and therefore should carry out its behavior with an optimal balance of time and 
resources as required by the actions it dispatches. 

• Is understandable and therefore should name its states and transitions from the 
vocabulary of the system. 

• Is not nested too deeply (nesting substates at one or two levels will handle most complex 
behaviors). 

• Uses concurrent substates sparingly as using active classes is often a better alternative. 

Modeling the vocabulary of a system is discussed in Chapter 4. 

When you draw a state machine in the UML, 

• Avoid transitions that cross. 

• Expand composite states in place only as necessary to make the diagram 
understandable. 

Chapter 22. Processes and Threads 
In this chapter 

• Active objects, processes, and threads 

• Modeling multiple flows of control 

• Modeling interprocess communication 

• Building thread-safe abstractions 

Process views in the context of softwarearchitecture are discussed in Chapter 2. 

Not only is the real world a harsh and unforgiving place, but it is a very busy place, as well. 
Events may happen and things may take place all at the same time. Therefore, when you model 
a system of the real world, you must take into account its process view, which encompasses the 
threads and processes that form the system's concurrency and synchronization mechanisms. 

In the UML, you model each independent flow of control as an active object that represents a 
process or thread that can initiate control activity. A process is a heavyweight flow that can 
execute concurrently with other processes; a thread is a lightweight flow that can execute 
concurrently with other threads within the same process. 

Building abstractions so that they work safely in the presence of multiple flows of control is hard. 
In particular, you have to consider approaches to communication and synchronization that are 
more complex than for sequential systems. You also have to be careful to neither over-engineer 



your process view (too many concurrent flows and your system ends up thrashing) nor under-
engineer it (insufficient concurrency does not optimize the system's throughput. 

Getting Started 
Modeling doghouses and high rises is discussed in Chapter 1. 

In the life of a dog and his doghouse, the world is a pretty simple and sequential place. Eat. 
Sleep. Chase a cat. Eat some more. Dream about chasing cats. Using the doghouse to sleep in 
or for shelter from the rain is never a problem because the dog, and only the dog, needs to go in 
and out through the doghouse door. There's never any contention for resources. 

In the life of a family and its house, the world is not so simple. Without getting too metaphysical, 
each family member lives his or her own life, yet still interacts with other members of the family 
(for dinner, watching television, playing games, cleaning). Family members will share certain 
resources. Children might share a bedroom; the whole family might share one phone or one 
computer. Family members will also share chores. Dad does the laundry and the grocery 
shopping; mom does the bills and the yard work; the children help with the cleaning and cooking. 
Contention among these shared resources and coordination among these independent chores 
can be challenging. Sharing one bathroom when everyone is getting ready to go to school or to 
work can be problematic; dinner won't be served if dad didn't first get the groceries. 

In the life of a high rise and its tenants, the world is really complex. Hundreds, if not thousands, of 
people might work in the same building, each following his or her own agenda. All must pass 
through a limited set of entrances. All must jockey for the same bank of elevators. All must share 
the same heating, cooling, water, electrical, sanitation, and parking facilities. If they are to work 
together optimally, they have to communicate and synchronize their interactions properly. 

Objects are discussed in Chapter 13. 

In the UML, each independent flow of control is modeled as an active object. An active object is a 
process or thread that can initiate control activity. As for every kind of object, an active object is 
an instance of a class. In this case, an active object is an instance of an active class. Also as for 
every kind of object, active objects can communicate with one another by passing messages, 
although here, message passing must be extended with certain concurrency semantics, to help 
you to synchronize the interactions among independent flows. 

In software, many programming languages directly support the concept of an active object. Java, 
Smalltalk, and Ada all have concurrency built in. C++ supports concurrency through various 
libraries that build on a host operating system's concurrency mechanisms. Using the UML to 
visualize, specify, construct, and document these abstractions is important because without doing 
so, it's nearly impossible to reason about issues of concurrency, communication, and 
synchronization. 

Classes are discussed in Chapters 4and 9 ; signals are discussed in Chapter 20. 

The UML provides a graphical representation of an active class, as Figure 22-1 shows. Active 
classes are kinds of classes, so have all the usual compartments for class name, attributes, and 
operations. Active classes often receive signals, which you typically enumerate in an extra 
compartment. 

Figure 22-1 Active Class 



 

Terms and Concepts 
Interaction diagrams are discussed in Chapter 18. 

An active object is an object that owns a process or thread and can initiate control activity. An 
active class is a class whose instances are active objects. A process is a heavyweight flow that 
can execute concurrently with other processes. A thread is a lightweight flow that can execute 
concurrently with other threads within the same process. Graphically, an active class is rendered 
as a rectangle with thick lines. Processes and threads are rendered as stereotyped active classes 
(and also appear as sequences in interaction diagrams). 

Flow of Control 

Actors are discussed in Chapter 16. 

In a purely sequential system, there is one flow of control. This means that one thing, and one 
thing only, can take place at a time. When a sequential program starts, control is rooted at the 
beginning of the program and operations are dispatched one after another. Even if there are 
concurrent things happening among the actors outside the system, a sequential program will 
process only one event at a time, queuing or discarding any concurrent external events. 

Actions are discussed in Chapter 15. 

This is why it's called a flow of control. If you trace the execution of a sequential program, you'll 
see the locus of execution flow from one statement to another, in sequential order. You might see 
actions that branch, loop, and jump about, and if there is any recursion or iteration, you see the 
flow circle back on itself. Nonetheless, in a sequential system, there would be a single flow of 
execution. 

In a concurrent system, there is more than one flow of control• that is, more than one thing can 
take place at a time. In a concurrent system, there are multiple simultaneous flows of control, 
each rooted at the head of an independent process or a thread. If you take a snapshot of a 
concurrent system while it's running, you'll logically see multiple loci of execution. 

Nodes are discussed in Chapter 26. 

In the UML, you use an active class to represent a process or thread that is the root of an 
independent flow of control and that is concurrent with all peer flows of control. 

Note 



You can achieve true concurrency in one of three ways: first, by distributing active 
objects across multiple nodes; second, by placing active objects on nodes with 
multiple processors; and third, by a combination of both methods. 

 

Classes and Events 

Classes are discussed in Chapters 4 and 9. 

Active classes are just classes, albeit ones with a very special property. An active class 
represents an independent flow of control, whereas a plain class embodies no such flow. In 
contrast to active classes, plain classes are implicitly called passive because they cannot 
independently initiate control activity. 

Objects are discussed in Chapter 13 ; attributes and operations are discussed in Chapter 4 ; 
relationships are discussed in Chapters 4 and 10 ; extensibility mechanisms are discussed in 
Chapter 6 ; interfaces are discussed in Chapter 11. 

You use active classes to model common families of processes or threads. In technical terms, 
this means that an active object• an instance of an active class• reifies (is a manifestation of) a 
process or thread. By modeling concurrent systems with active objects, you give a name to each 
independent flow of control. When an active object is created, the associated flow of control is 
started; when the active object is destroyed, the associated flow of control is terminated. 

Active classes share the same properties as all other classes. Active classes may have 
instances. Active classes may have attributes and operations. Active classes may participate in 
dependency, generalization, and association (including aggregation) relationships. Active classes 
may use any of the UML's extensibility mechanisms, including stereotypes, tagged values, and 
constraints. Active classes may be the realization of interfaces. Active classes may be realized by 
collaborations, and the behavior of an active class may be specified by using state machines. 

State machines are discussed in Chapter 21 ; events are discussed in Chapter 20. 

In your diagrams, active objects may appear wherever passive objects appear. You can model 
the collaboration of active and passive objects by using interaction diagrams (including sequence 
and collaboration diagrams). An active object may appear as the target of an event in a state 
machine. 

Speaking of state machines, both passive and active objects may send and receive signal events 
and call events. 

Standard Elements 

The UML's extensibility mechanisms are discussed in Chapter 6. 

All of the UML's extensibility mechanisms apply to active classes. Most often, you'll use tagged 
values to extend active class properties, such as specifying the scheduling policy of the active 
class. 

The UML's standard elements are summarized in Appendix B. 

The UML defines two standard stereotypes that apply to active classes. 

1. 
process  

Specifies a heavyweight flow that can execute concurrently with other processes 



2. thread  Specifies a lightweight flow that can execute concurrently with other threads within 
the same process 

Nodes are discussed in Chapter 26. 

The distinction between a process and a thread arises from the two different ways a flow of 
control may be managed by the operating system of the node on which the object resides. 

A process is heavyweight, which means that it is a thing known to the operating system itself and 
runs in an independent address space. Under most operating systems, such as Windows and 
Unix, each program runs as a process in its own address space. In general, all processes on a 
node are peers of one another, contending for all the same resources accessible on the node. 
Processes are never nested inside one another. If the node has multiple processors, then true 
concurrency on that node is possible. If the node has only one processor, there is only the illusion 
of true concurrency, carried out by the underlying operating system. 

A thread is lightweight. It may be known to the operating system itself. More often, it is hidden 
inside a heavier-weight process and runs inside the address space of the enclosing process. In 
Java, for example, a thread is a child of the class Thread. All the threads that live in the context 
of a process are peers of one another, contending for the same resources accessible inside the 
process. Threads are never nested inside one another. In general, there is only the illusion of true 
concurrency among threads because it is processes, not threads, that are scheduled by a node's 
operating system. 

Communication 

Interactions are discussed in Chapter 15. 

When objects collaborate with one another, they interact by passing messages from one to the 
other. In a system with both active and passive objects, there are four possible combinations of 
interaction that you must consider. 

First, a message may be passed from one passive object to another. Assuming there is only one 
flow of control passing through these objects at a time, such an interaction is nothing more than 
the simple invocation of an operation. 

Signal events and call events are discussed in Chapter 20. 

Second, a message may be passed from one active object to another. When that happens, you 
have interprocess communication, and there are two possible styles of communication. First, one 
active object might synchronously call an operation of another. That kind of communication has 
rendezvous semantics, which means that the caller calls the operation; the caller waits for the 
receiver to accept the call; the operation is invoked; a return object (if any) is passed back to the 
caller; and then the two continue on their independent paths. For the duration of the call, the two 
flows of controls are in lock step. Second, one active object might asynchronously send a signal 
or call an operation of another object. That kind of communication has mailbox semantics, which 
means that the caller sends the signal or calls the operation and then continues on its 
independent way. In the meantime, the receiver accepts the signal or call whenever it is ready 
(with intervening events or calls queued) and continues on its way after it is done. This is called a 
mailbox because the two objects are not synchronized; rather, one object drops off a message for 
the other. 

In the UML, you render a synchronous message as a full arrow and an asynchronous message 
as a half arrow, as in Figure 22-2. 

Figure 22-2 Communication 



 
Third, a message may be passed from an active object to a passive object. A difficulty arises if 
more than one active object at a time passes their flow of control through one passive object. In 
that situation, you have to model the synchronization of these two flows very carefully, as 
discussed in the next section. 

Constraints are discussed in Chapter 6. 

Fourth, a message may be passed from a passive object to an active one. At first glance, this 
may seem illegal, but if you remember that every flow of control is rooted in some active object, 
you'll understand that a passive object passing a message to an active object has the same 
semantics as an active object passing a message to an active object. 

Note 

It is possible to model variations of synchronous and asynchronous message passing 
by using constraints. For example, to model a balking rendezvous as found in Ada, 
you'd use a synchronous message with a constraint such as {wait = 0}, saying 
that the caller will not wait for the receiver. Similarly, you can model a time out by 
using a constraint such as {wait = 1 ms}, saying that the caller will wait no more 
than one millisecond for the receiver to accept the message. 

 

Synchronization 

Visualize for a moment the multiple flows of control that weave through a concurrent system. 
When a flow passes through an operation, we say that at a given moment, the locus of control is 
in the operation. If that operation is defined for some class, we can also say that at a given 
moment, the locus of control is in a specific instance of that class. You can have multiple flows of 
control in one operation (and therefore in one object), and you can have different flows of control 
in different operations (but still result in multiple flows of control in the one object). 

The problem arises when more than one flow of control is in one object at the same time. If you 
are not careful, anything more than one flow will interfere with another, corrupting the state of the 
object. This is the classical problem of mutual exclusion. A failure to deal with it properly yields all 



sorts of race conditions and interference that cause concurrent systems to fail in mysterious and 
unrepeatable ways. 

The key to solving this problem in object-oriented systems is by treating an object as a critical 
region. There are three alternatives to this approach, each of which involves attaching certain 
synchronization properties to the operations defined in a class. In the UML, you can model all 
three approaches. 

1. 
Sequential  

Callers must coordinate outside the object so that only one flow is in the object at a 
time. In the presence of multiple flows of control, the semantics and integrity of the 
object cannot be guaranteed. 

2. Guarded  The semantics and integrity of the object is guaranteed in the presence of multiple 
flows of control by sequentializing all calls to all of the object's guarded operations. In 
effect, exactly one operation at a time can be invoked on the object, reducing this to 
sequential semantics. 

3. 
Concurrent  

The semantics and integrity of the object is guaranteed in the presence of multiple 
flows of control by treating the operation as atomic. 

Some programming languages support these constructs directly. Java, for example, has the 
synchronized property, which is equivalent to the UML's concurrent property. In every 
language that supports concurrency, you can build support for all these properties by constructing 
them out of semaphores. 

Constraints are discussed in Chapter 6. 

As Figure 22-3 shows, you can attach these properties to an operation, which you can render in 
the UML by using constraint notation. 

Figure 22-3 Synchronization 

 
Note 

It is possible to model variations of these synchronization primitives by using 
constraints. For example, you might modify the concurrent property by allowing 
multiple simultaneous readers but only a single writer. 

 

Process Views 



Process views in the context of software architecture are discussed in Chapter 2. 

Active objects play an important role in visualizing, specifying, constructing, and documenting a 
system's process view. The process view of a system encompasses the threads and processes 
that form the system's concurrency and synchronization mechanisms. This view primarily 
addresses the performance, scalability, and throughput of the system. With the UML, the static 
and dynamic aspects of this view are captured in the same kinds of diagrams as for the design 
view• that is, class diagrams, interaction diagrams, activity diagrams, and statechart diagrams, 
but with a focus on the active classes that represent these threads and processes. 

Common Modeling Techniques 

Modeling Multiple Flows of Control 

Mechanisms are discussed in Chapter 28 ; class diagrams are discussed in Chapter 8 ; 
interaction diagrams are discussed in Chapter 18. 

Building a system that encompasses multiple flows of control is hard. Not only do you have to 
decide how best to divide work across concurrent active objects, but once you've done that, you 
also have to devise the right mechanisms for communication and synchronization among your 
system's active and passive objects to ensure that they behave properly in the presence of these 
multiple flows. For that reason, it helps to visualize the way these flows interact with one another. 
You can do that in the UML by applying class diagrams (to capture their static semantics) and 
interaction diagrams (to capture their dynamic semantics) containing active classes and objects. 

To model multiple flows of control, 

Process views are discussed in Chapter 2 ; classes are discussed in Chapters 4 and 9 ; 
relationships are discussed in Chapters 5 and10. 

• Identify the opportunities for concurrent action and reify each flow as an active class. 
Generalize common sets of active objects into an active class. Be careful not to over-
engineer the process view of your system by introducing too much concurrency. 

• Consider a balanced distribution of responsibilities among these active classes, then 
examine the other active and passive classes with which each collaborates statically. 
Ensure that each active class is both tightly cohesive and loosely coupled relative to 
these neighboring classes and that each has the right set of attributes, operations, and 
signals. 

• Capture these static decisions in class diagrams, explicitly highlighting each active class. 

• Consider how each group of classes collaborates with one another dynamically. Capture 
those decisions in interaction diagrams. Explicitly show active objects as the root of such 
flows. Identify each related sequence by identifying it with the name of the active object. 

• Pay close attention to communication among active objects. Apply synchronous and 
asynchronous messaging, as appropriate. 

• Pay close attention to synchronization among these active objects and the passive 
objects with which they collaborate. Apply sequential, guarded, or concurrent operation 
semantics, as appropriate. 

For example, Figure 22-4 shows part of the process view of a trading system. You'll find three 
objects that push information into the system concurrently: a StockTicker, an 
IndexWatcher, and a CNNNewsFeed (named s, i, and c, respectively). Two of these objects 



(s and i) communicate with their own Analyst instances (a1 and a2). At least as far as this 
model goes, the Analyst can be designed under the simplifying assumption that only one flow 
of control will be active in its instances at a time. Both Analyst instances, however, 
communicate simultaneously with an AlertManager (named m). Therefore, m must be designed 
to preserve its semantics in the presence of multiple flows. Both m and c communicate 
simultaneously with t, a TradingManager. Each flow is given a sequence number that is 
distinguished by the flow of control that owns it. 

Figure 22-4 Modeling Flows of Control 

 
Note 

Interaction diagrams such as these are useful in helping you to visualize where two 
flows of control might cross paths and, therefore, where you must pay particular 
attention to the problems of communication and synchronization. Tools are permitted 
to offer even more distinct visual cues, such as by coloring each flow in a distinct way. 

 

State machines are discussed in Chapter 21. 

In diagrams such as this, it's also common to attach corresponding state machines, with 
orthogonal states showing the detailed behavior of each active object. 

Modeling Interprocess Communication 

Signals and call events are discussed in Chapter 20. 

As part of incorporating multiple flows of control in your system, you also have to consider the 
mechanisms by which objects that live in separate flows communicate with one another. Across 
threads (which live in the same address space), objects may communicate via signals or call 
events, the latter of which may exhibit either asynchronous or synchronous semantics. Across 
processes (which live in separate address spaces), you usually have to use different 
mechanisms. 

Modeling location is discussed in Chapter 23. 

The problem of interprocess communication is compounded by the fact that, in distributed 
systems, processes may live on separate nodes. Classically, there are two approaches to 



interprocess communication: message passing and remote procedure calls. In the UML, you still 
model these as asynchronous or synchronous events, respectively. But because these are no 
longer simple in-process calls, you need to adorn your designs with further information. 

To model interprocess communication, 

Stereotypes are discussed in Chapter 6 ; notes are discussed in Chapter 6 ; collaborations are 
discussed in Chapter 27 ; nodes are discussed in Chapter 26. 

• Model the multiple flows of control. 

• Consider which of these active objects represent processes and which represent threads. 
Distinguish them using the appropriate stereotype. 

• Model messaging using asynchronous communication; model remote procedure calls 
using synchronous communication. 

• Informally specify the underlying mechanism for communication by using notes, or more 
formally by using collaborations. 

Figure 22-5 shows a distributed reservation system with processes spread across four nodes. 
Each object is marked using the process stereotype. Each object is also marked with a 
location tagged value, specifying its physical location. Communication among the 
ReservationAgent, TicketingManager, and HotelAgent is asynchronous. Modeled with 
a note, communication is described as building on a Java Beans messaging service. 
Communication between the TripPlanner and the ReservationSystem is synchronous. The 
semantics of their interaction is found in the collaboration named CORBA ORB. The 
TripPlanner acts as a client, and the ReservationAgent acts as a server. By zooming 
into the collaboration, you'll find the details of how this server and client collaborate. 

Figure 22-5 Modeling Interprocess Communication 

 

Hints and Tips 
A well-structured active class and active object 



• Represents an independent flow of control that maximizes the potential for true 
concurrency in the system. 

• Is not so fine-grained that it requires a multitude of other active elements that might result 
in an over-engineered and fragile process architecture. 

• Carefully manages communication among peer active elements, choosing between 
asynchronous and synchronous messaging. 

• Carefully treats each object as a critical region, using suitable synchronization properties 
to preserve its semantics in the presence of multiple flows of control. 

• Explicitly distinguishes between process and thread semantics. 

When you draw an active class or an active object in the UML, 

• Show only those attributes, operations, and signals that are important in understanding 
the abstraction in its context. 

• Explicitly show all operation synchronization properties. 

Chapter 23. Time and Space 
In this chapter 

• Time, duration, and location 

• Modeling timing constraints 

• Modeling the distribution of objects 

• Modeling objects that migrate 

• Dealing with real time and distributed systems 

The real world is a harsh and unforgiving place. Events may happen at unpredictable times, yet 
demand a specific response at a specific time. A system's resources may have to be distributed 
around the world• some of those resources might even move about• raising issues of latency, 
synchronization, security, and quality of service. 

Modeling time and space is an essential element of any real time and/or distributed system. You 
use a number of the UML's features, including timing marks, time expressions, constraints, and 
tagged values, to visualize, specify, construct, and document these systems. 

Dealing with real time and distributed systems is hard. Good models reveal the necessary and 
sufficient properties of a system's time and space characteristics. 

Getting Started 
When you start to model most software systems, you can usually assume a frictionless 
environment• messages are sent in zero time, networks never go down, workstations never fail, 
the load across your network is always evenly balanced. Unfortunately, the real world does not 
work that way• messages do take time to deliver (and, sometimes, never get delivered), 
networks do go down, workstations do fail, and a network's load is often unbalanced. Therefore, 
when you encounter systems that must operate in the real world, you have to take into account 
the issues of time and space. 



A real time system is one in which certain behavior must be carried out at a precise absolute or 
relative time and within a predictable, often constrained, duration. At one extreme, such systems 
may be hard real time and require complete and repeatable behavior within nanoseconds or 
milliseconds. At the other extreme, models may be near real time and also require predictable 
behavior, but on the order of seconds or longer. 

Components are discussed in Chapter 25 ; nodes are discussed in Chapter 26. 

A distributed system is one in which components may be physically distributed across nodes. 
These nodes may represent different processors physically located in the same box, or they may 
even represent computers that are located half a world away from one another. 

To represent the modeling needs of real time and distributed systems, the UML provides a 
graphic representation for timing marks, time expressions, timing constraints, and location, as 
Figure 23-1 shows. 

Figure 23-1 Timing Constraints and Location 

 

Terms and Concepts 
A timing mark is a denotation for the time at which an event occurs. Graphically, a timing mark is 
formed as an expression from the name given to the message (which is typically different from 
the name of the action dispatched by the message). A time expression is an expression that 
evaluates to an absolute or relative value of time. A timing constraint is a semantic statement 
about the relative or absolute value of time. Graphically, a timing constraint is rendered as for any 
constraint• that is, a string enclosed by brackets and generally connected to an element by a 
dependency relationship. Location is the placement of a component on a node. Graphically, 
location is rendered as a tagged value• that is, a string enclosed by brackets and placed below 
an element's name, or as the nesting of components inside nodes. 

Time 

Events, including time events, are discussed in Chapter 20 ; messages and interactions are 
discussed in Chapter 15 ; constraints are discussed in Chapter 6. 

Real time systems are, by their very name, time-critical systems. Events may happen at regular 
or irregular times; the response to an event must happen at predictable absolute times or at 
predictable times relative to the event itself. 



The passing of messages represents the dynamic aspect of any system, so when you model the 
time-critical nature of a system with the UML, you can give a name to each message in an 
interaction to be used as a timing mark. Messages in an interaction are usually not given names. 
They are mainly rendered with the name of an event, such as a signal or a call. As a result, you 
can't use the event name to write an expression because the same event may trigger different 
messages. If the designated message is ambiguous, use the explicit name of the message in a 
timing mark to designate the message you want to mention in a time expression. A timing mark is 
nothing more than an expression formed from the name of a message in an interaction. Given a 
message name, you can refer to any of three functions of that message• that is, startTime, 
stopTime, and executionTime. You can then use these functions to specify arbitrarily 
complex time expressions, perhaps even using weights or offsets that are either constants or 
variables (as long as those variables can be bound at execution time). Finally, as shown in 
Figure 23-2, you can place these time expressions in a timing constraint to specify the timing 
behavior of the system. As constraints, you can render them by placing them adjacent to the 
appropriate message, or you can explicitly attach them using dependency relationships. 

Figure 23-2 Time 

 
Note 

Especially for complex systems, it's a good idea to write expressions with named 
constants instead of writing explicit times. You can define those constants in one part 
of your model and then refer to those constants in multiple places. In that way, it's 
easier to update your model if the timing requirements of your system change. 

 

The semantics tagged value is discussed in Chapter 9 

Note 

You can also apply time expressions to operations. The standard tagged value called 
semantics can be attached to any operation, and by using a time expression there, 
you can specify the operation's time complexity. Time complexity typically models the 
minimum, maximum, and/or average time in which you expect that operation to 
complete. Specifying an operation's time complexity in effect specifies a time budget 
for the operation, which you can use in two ways. First, by asserting your time budgets 



during development and then by measuring the running system, you can make 
intelligent comparisons about the as-designed versus the as-built behavior of your 
system. Second, by adding up the results (designed or actual) of the time expression 
for all the operations in an interaction, you can calculate the time complexity of an 
entire transaction. 

 

Location 

Components are discussed in Chapter 25 ; nodes are discussed in Chapter 26. 

Distributed systems, by their nature, encompass components that are physically scattered among 
the nodes of a system. For many systems, components are fixed in place at the time they are 
loaded on the system; in other systems, components may migrate from node to node. 

Deployment diagrams are discussed in Chapter 30 ; the class/ object dichotomy is discussed in 
Chapters 2 and 13. 

In the UML, you model the deployment view of a system by using deployment diagrams that 
represent the topology of the processors and devices on which your system executes. 
Components such as executables, libraries, and tables reside on these nodes. Each instance of a 
node will own instances of certain components, and each instance of a component will be owned 
by exactly one instance of a node (although instances of the same kind of component may be 
spread across different nodes). For example, as Figure 23-3 shows, the executable component 
vision.exe may reside on the node named KioskServer. 

Figure 23-3 Location 

 
Classes are discussed in Chapters 4 and 9. 

Instances of plain classes may reside on a node, as well. For example, as Figure 23-3 shows, 
an instance of the class LoadAgent lives on the node named Router. 

Tagged values and extra compartments are discussed in Chapter 6 

The become and copy stereotypes are discussed in Chapter 13. 

As the figure illustrates, you can model the location of an element in two ways in the UML. First, 
as shown for the KioskServer, you can physically nest the element (textually or graphically) in 
a extra compartment in its enclosing node. Second, as shown for the LoadAgent, you can use 
the defined tagged value location to designate the node on which the class instance resides. 



You'll typically use the first form when it's important for you to give a visual cue in your diagrams 
about the spatial separation and grouping of components. Similarly, you'll use the second form 
when modeling the location of an element is important, but secondary, to the diagram at hand, 
such as when you want to visualize the passing of messages among instances. 

Note 

The second form for modeling the location of an element is especially useful when you 
want to show the redistribution of a component over time. For example, you can use a 
become message to model an object currently residing at one location and moving to 
another location. Similarly, you can use a copy message to show the semantic 
relationship between distant objects. 

Common Modeling Techniques 

Modeling Timing Constraints 

Constraints, one of the UML's extensibility mechanisms, are discussed in Chapter 6. 

Modeling the absolute time of an event, modeling the relative time between events, and modeling 
the time it takes to carry out an action are the three primary time-critical properties of real time 
systems for which you'll use timing constraints. 

To model timing constraints, 

• For each event in an interaction, consider whether it must start at some absolute time. 
Model that real time property as a timing constraint on the message. 

• For each interesting sequence of messages in an interaction, consider whether there is 
an associated maximum relative time for that sequence. Model that real time property as 
a timing constraint on the sequence. 

• For each time critical operation in each class, consider its time complexity. Model those 
semantics as timing constraints on the operation. 

For example, as shown in Figure 23-4, the left-most constraint specifies the repeating start time 
the call event refresh. Similarly, the center timing constraint specifies the maximum duration 
for calls to getImage. Finally, the right-most constraint specifies the time complexity of the call 
event getImage. 

Figure 23-4 Modeling Timing Constraint 

 
Note 



Observe that executionTime may be applied to actions such as getImage, as well 
as to timing marks such as a and b. Also, timing constraints such as these may be 
written as free-form text. If you want to specify your semantics more precisely, you can 
use the UML's Object Constraint Language (OCL), described further in The Unified 
Modeling Language Reference Manual. 

 
Often, you'll choose short names for messages, so that you don't confuse them with operation 
names. 

Modeling the Distribution of Objects 

Modeling the distribution of a component is discussed in Chapter 25. 

When you model the topology of a distributed system, you'll want to consider the physical 
placement of both components and class instances. If your focus is the configuration 
management of the deployed system, modeling the distribution of components is especially 
important in order to visualize, specify, construct, and document the placement of physical things 
such as executables, libraries, and tables. If your focus is the functionality, scalability, and 
throughput of the system, modeling the distribution of objects is what's important. 

Modeling processes and threads is discussed in Chapter 22. 

Deciding how to distribute the objects in a system is a wicked problem, and not just because the 
problems of distribution interact with the problems of concurrency. Naive solutions tend to yield 
profoundly poor performance, and over-engineering solutions aren't much better. In fact, they are 
probably worse because they usually end up being brittle. 

To model the distribution of objects, 

• For each interesting class of objects in your system, consider its locality of reference. In 
other words, consider all its neighbors and their locations. A tightly coupled locality will 
have neighboring objects close by; a loosely coupled one will have distant objects (and 
thus, there will be latency in communicating with them). Tentatively allocate objects 
closest to the actors that manipulate them. 

• Next consider patterns of interaction among related sets of objects. Co-locate sets of 
objects that have high degrees of interaction, to reduce the cost of communication. 
Partition sets of objects that have low degrees of interaction. 

• Next consider the distribution of responsibilities across the system. Redistribute your 
objects to balance the load of each node. 

• Consider also issues of security, volatility, and quality of service, and redistribute your 
objects as appropriate. 

• Render this allocation in one of two ways: 

1. By nesting objects in the nodes of a deployment diagram 

2. By explicitly indicating the location of the object as a tagged value 

Object diagrams are discussed in Chapter 14. 



Figure 23-5 provides an object diagram that models the distribution of certain objects in a retail 
system. The value of this diagram is that it lets you visualize the physical distribution of certain 
key objects. As the diagram shows, two objects reside on a Workstation (the Order and 
Sales objects), two objects reside on a Server (the ObserverAgent and the Product 
objects), and one object resides on a DataWarehouse (the ProductTable object). 

Figure 23-5 Modeling the Distribution of Objects 

 
Modeling Objects that Migrate 

For many distributed systems, components and objects, once loaded on the system, stay put. For 
their lifetime, from creation to destruction, they never leave the node on which they were born. 
There are certain classes of distributed systems, however, for which things move about, usually 
for one of two reasons. 

First, you'll find objects migrating in order to move closer to actors and other objects they need to 
work with to do their job better. For example, in a global shipping system, you'd see objects that 
represent ships, containers, and manifests moving from node to node to track their physical 
counterpart. If you have a ship in Hong Kong, it makes for better locality of reference to put the 
object representing the ship, its containers, and its manifest on a node in Hong Kong. When that 
ship sails to San Diego, you'd want to move the associated objects, as well. 

Second, you'll find objects migrating in response to the failure of a node or connection or to 
balance the load across multiple nodes. For example, in an air traffic control system, the failure of 
one node cannot be allowed to stall a nation's entire operations. Rather, a failure-tolerant system 
such as this will migrate elements to other nodes. Performance and throughput may be reduced, 



but safe functionality will be preserved. Similarly, and especially in Web-based systems that must 
deal with unpredictable peaks in demand, you'll often want to build mechanisms to automatically 
balance the processing load, perhaps by migrating components and objects to underused nodes. 

Deciding how to migrate the objects in a system is an even more wicked problem than simple 
static distribution because migration raises difficult problems of synchronization and preservation 
of identity. 

To model the migration of objects, 

Mechanisms are discussed in Chapter 28. 

Thebecomeand copystereotypes are discussed in Chapter 13. 

• Select an underlying mechanism for physically transporting objects across nodes. 

• Render the allocation of an object to a node by explicitly indicating its location as a 
tagged value. 

• Using the become and copy stereotyped messages, render the allocation of an object to 
a new node. 

• Consider the issues of synchronization (keeping the state of cloned objects consistent) 
and identity (preserving the name of the object as it moves). 

Collaboration diagrams are discussed in Chapter 18. 

Figure 23-6 provides a collaboration diagram that models the migration of a Web agent that 
moves from node to node, collecting information and bidding on resources in order to 
automatically deliver a lowest-cost travel ticket. Specifically, this diagram shows an instance 
(named t) of the class TravelAgent migrating from one server to another. Along the way, the 
object interacts with anonymous Auctioneer instances at each node, eventually delivering a bid 
for the Itinerary object, located on the client server. 

Figure 23-6 Modeling Objects that Migrate 

 

Hints and Tips 
A well-structured model with time and space properties 



• Exposes only those time and space properties that are necessary and sufficient to 
capture the desired behavior of the system. 

• Centralizes the use of those properties so that they are easy to find and easy to modify. 

When you draw a time or space property in the UML, 

• Give your timing marks (the names of messages) meaningful names. 

• Clearly distinguish between relative and absolute time expressions. 

• Show space properties primarily by tagged value. Use the nested form only when it's 
important to visualize the placement of elements across a deployed system. 

Chapter 24. Statechart Diagrams 
In this chapter 

• Modeling reactive objects 

• Forward and reverse engineering 

Sequence diagrams, collaboration diagrams,activity diagrams, anduse case diagrams also model 
the dynamic aspects of systems; sequence diagrams and collaboration diagrams are discussed 
in Chapter 18; activity diagrams are discussed in Chapter 19; use case diagrams are 
discussed in Chapter 17. 

Statechart diagrams are one of the five diagrams in the UML for modeling the dynamic aspects of 
systems. A statechart diagram shows a state machine. An activity diagram is a special case of a 
statechart diagram in which all or most of the states are activity states and all or most of the 
transitions are triggered by completion of activities in the source state. Thus, both activity and 
statechart diagrams are useful in modeling the lifetime of an object. However, whereas an activity 
diagram shows flow of control from activity to activity, a statechart diagram shows flow of control 
from state to state. 

You use statechart diagrams to model the dynamic aspects of a system. For the most part, this 
involves modeling the behavior of reactive objects. A reactive object is one whose behavior is 
best characterized by its response to events dispatched from outside its context. A reactive object 
has a clear lifetime whose current behavior is affected by its past. Statechart diagrams may be 
attached to classes, use cases, or entire systems in order to visualize, specify, construct, and 
document the dynamics of an individual object. 

Statechart diagrams are not only important for modeling the dynamic aspects of a system, but 
also for constructing executable systems through forward and reverse engineering. 

Getting Started 
The differences between building a dog house and building a high rise are discussed in Chapter 
1. 

Consider the investor who finances the building of a new high rise. She is unlikely to be interested 
in the details of the building process. The selection of materials, the scheduling of the trades, and 
the many meetings about engineering details are activities are important to the builder, but far 
less so to the person bankrolling the project. 



The investor is interested in getting a good return on the investment, and that also means 
protecting the investment against risk. A really trusting investor will give a builder a pile of money, 
walk away for a while, and return only when the builder is ready to hand over the keys to the 
building. Such an investor is really interested in the final state of the building. 

A more pragmatic investor will still trust the builder, but will also want to verify that the project is 
on track before releasing money. So, rather than give the builder an unattended pile of money to 
dip into, the prudent investor will set up clear milestones for the project, each of which is tied to 
the completion of certain activities, and only after which money is released to the builder for the 
next phase of the project. For example, a modest amount of funds might be released at the 
project's inception, to fund the architectural work. After the architectural vision has been 
approved, then more funds may be released to pay for the engineering work. After that work is 
completed to the project stakeholders'satisfaction, a larger pile of money may be released so that 
the builder can proceed with breaking ground. Along the way, from ground breaking to issuance 
of the certificate of occupancy, there are other milestones. 

Gantt charts and Pert charts are discussed in Chapter 19. 

Each of these milestones names a stable state of the project: architecture complete, engineering 
done, ground broken, infrastructure completed, building sealed, and so on. For the investor, 
following the changing state of the building is more important than following the flow of activities, 
which is what the builder might be doing by using Pert charts to model the workflow of the project. 

Activity diagrams as flowcharts are discussed in Chapter 19; state machines are discussed in 
Chapter 21. 

In modeling software-intensive systems, as well, you'll find the most natural way to visualize, 
specify, construct, and document the behavior of certain kinds of objects is by focusing on the 
flow of control from state to state rather than from activity to activity. You would do the latter with 
a flowchart (and in the UML, with an activity diagram). Imagine, for a moment, modeling the 
behavior of an embedded home security system. Such a system runs continuously, reacting to 
events from the outside, such as a window break. In addition, the order of events changes the 
way the system behaves. For example, the detection of a window break will only trigger an alarm 
if the system is first armed. The behavior of such a system is best specified by modeling its stable 
states (for example, Idle, Armed, Active, Checking, and so on), the events that trigger a 
change from state to state, and the actions that occur on each state change. 

In the UML, you model the event-ordered behavior of an object by using statechart diagrams. As 
Figure 24-1 shows, a statechart diagram is simply a presentation of a state machine, 
emphasizing the flow of control from state to state. 

Figure 24-1 Statechart Diagram 



 

Terms and Concepts 
A statechart diagram shows a state machine, emphasizing the flow of control from state to state. 
A state machine is a behavior that specifies the sequences of states an object goes through 
during its lifetime in response to events, together with its responses to those events. A state is a 
condition or situation in the life of an object during which it satisfies some condition, performs 
some activity, or waits for some event. An event is the specification of a significant occurrence 
that has a location in time and space. In the context of state machines, an event is an occurrence 
of a stimulus that can trigger a state transition. A transition is a relationship between two states 
indicating that an object in the first state will perform certain actions and enter the second state 
when a specified event occurs and specified conditions are satisfied. An activity is ongoing 
nonatomic execution within a state machine. An action is an executable atomic computation that 
results in a change in state of the model or the return of a value. Graphically, a statechart 
diagram is a collection of vertices and arcs. 

Common Properties 

The general properties of diagrams are discussed in Chapter 7. 

A statechart diagram is just a special kind of diagram and shares the same common properties as 
do all other diagrams• that is, a name and graphical contents that are a projection into a model. 
What distinguishes a statechart diagram from all other kinds of diagrams is its content. 

Contents 

Simple states, composite states, transitions, events, and actions are discussed in Chapter 21; 
activity diagrams are discussed in Chapter 19. 

Statechart diagrams commonly contain 

• Simple states and composite states 

• Transitions, including events and actions 

Note 

A statechart diagram is basically a projection of the elements found in a state machine. 
This means that statechart diagrams may contain branches, forks, joins, action states, 
activity states, objects, initial states, final states, history states, and so on. Indeed, a 
statechart diagram may contain any and all features of a state machine. What 



distinguishes an activity diagram from a statechart diagram is that an activity diagram 
is basically a projection of the elements found in an activity graph, a special case of a 
state machine in which all or most states are activity states and in which all or most 
transitions are triggered by completion of activities in the source state. 

 

Notes and constraints are discussed in Chapter 6. 

Like all other diagrams, statechart diagrams may contain notes and constraints. 

Common Uses 

The five views of an architecture are discussed in Chapter 2;instances are discussed in 
Chapter 13; classes are discussed in Chapters 4 and 9. 

You use statechart diagrams to model the dynamic aspects of a system. These dynamic aspects 
may involve the event-ordered behavior of any kind of object in any view of a system's 
architecture, including classes (which includes active classes), interfaces, components, and 
nodes. 

When you use a statechart diagram to model some dynamic aspect of a system, you do so in the 
context of virtually any modeling element. Typically, however, you'll use statechart diagrams in 
the context of the system as a whole, a subsystem, or a class. You can also attach statechart 
diagrams to use cases (to model a scenario). 

Active classes are discussed in Chapter 22; interfaces are discussed in Chapter 11; 
components are discussed in Chapter 25; nodes are discussed in Chapter 26; use cases are 
discussed in Chapter 16; systems are discussed in Chapter 31. 

When you model the dynamic aspects of a system, a class, or a use case, you'll typically use 
statechart diagrams in one way. 

• To model reactive objects 

A reactive —  or event-driven —  object is one whose behavior is best characterized by its response 
to events dispatched from outside its context. A reactive object is typically idle until it receives an 
event. When it receives an event, its response usually depends on previous events. After the 
object responds to an event, it becomes idle again, waiting for the next event. For these kinds of 
objects, you'll focus on the stable states of that object, the events that trigger a transition from 
state to state, and the actions that occur on each state change. 

Note 

In contrast, you'll use activity diagrams to model a workflow or to model an operation. 
Activity diagrams are better suited to modeling the flow of activities over time, such as 
you would represent in a flowchart. 

Common Modeling Technique 

Modeling Reactive Objects 

Interactions are discussed in Chapter 15; activity diagrams are discussed in Chapter 19. 

The most common purpose for which you'll use statechart diagrams is to model the behavior of 
reactive objects, especially instances of classes, use cases, and the system as a whole. Whereas 



interactions model the behavior of a society of objects working together, a statechart diagram 
models the behavior of a single object over its lifetime. Whereas an activity diagram models the 
flow of control from activity to activity, a statechart diagram models the flow of control from event 
to event. 

Modeling thelifetime of an object is discussed in Chapter 21. 

When you model the behavior of a reactive object, you essentially specify three things: the stable 
states in which that object may live, the events that trigger a transition from state to state, and the 
actions that occur on each state change. Modeling the behavior of a reactive object also involves 
modeling the lifetime of an object, starting at the time of the object's creation and continuing until 
its destruction, highlighting the stable states in which the object may be found. 

Time andspace are discussed in Chapter 23. 

A stable state represents a condition in which an object may exist for some identifiable period of 
time. When an event occurs, the object may transition from state to state. These events may also 
trigger self- and internal transitions, in which the source and the target of the transition are the 
same state. In reaction to an event or a state change, the object may respond by dispatching an 
action. 

Note 

When you model the behavior of a reactive object, you can specify its action by tying it 
to a transition or to a state change. In technical terms, a state machine whose actions 
are all attached to transitions is called a Mealy machine; a state machine whose 
actions are all attached to states is called a Moore machine. Mathematically, the two 
styles have equivalent power. In practice, you'll typically develop statechart diagrams 
that use a combination of Mealy and Moore machines. 

 
To model a reactive object, 

Pre- andpostconditions are discussed in Chapter 10; interfaces are discussed in Chapter 11. 

• Choose the context for the state machine, whether it is a class, a use case, or the system 
as a whole. 

• Choose the initial and final states for the object. To guide the rest of your model, possibly 
state the pre- and postconditions of the initial and final states, respectively. 

• Decide on the stable states of the object by considering the conditions in which the object 
may exist for some identifiable period of time. Start with the high-level states of the object 
and only then consider its possible substates. 

• Decide on the meaningful partial ordering of stable states over the lifetime of the object. 

• Decide on the events that may trigger a transition from state to state. Model these events 
as triggers to transitions that move from one legal ordering of states to another. 

• Attach actions to these transitions (as in a Mealy machine) and/or to these states (as in a 
Moore machine). 

• Consider ways to simplify your machine by using substates, branches, forks, joins, and 
history states. 



• Check that all states are reachable under some combination of events. 

• Check that no state is a dead end from which no combination of events will transition the 
object out of that state. 

• Trace through the state machine, either manually or by using tools, to check it against 
expected sequences of events and their responses. 

For example, Figure 24-2 shows the statechart diagram for parsing a simple context-free 
language, such as you might find in systems that stream in or stream out messages to XML. In 
this case, the machine is designed to parse a stream of characters that match the syntax 

Figure 24-2 Modeling Reactive Objects 

 
       
         message : '<'string '>'string ';' 

The first string represents a tag; the second string represents the body of the message. Given a 
stream of characters, only well-formed messages that follow this syntax may be accepted. 

Events are discussed in Chapter 20. 

As the figure shows, there are only three stable states for this state machine: Waiting, 
GettingToken, and GettingBody. This statechart is designed as a Mealy machine, with 
actions tied to transitions. In fact, there is only one event of interest in this state machine, the 
invocation of put with the actual parameter c (a character). While Waiting, this machine throws 
away any character that does not designate the start of a token (as specified by the guard 
condition). When the start of a token is received, the state of the object changes to 
GettingToken. While in that state, the machine saves any character that does not designate 
the end of a token (as specified by the guard condition). When the end of a token is received, the 
state of the object changes to GettingBody. While in that state, the machine saves any 
character that does not designate the end of a message body (as specified by the guard 
condition). When the end of a message is received, the state of the object changes to Waiting, 



and a value is returned indicating that the message has been parsed (and the machine is ready 
to receive another message). 

Note that this statechart specifies a machine that runs continuously; there is no final state. 

Forward and Reverse Engineering 

Forward engineering(the creation of code from a model) is possible for statechart diagrams, 
especially if the context of the diagram is a class. For example, using the previous statechart 
diagram, a forward engineering tool could generate the following Java code for the class 
MessageParser. 
       
       class MessageParser { 
       public  
        boolean put(char c) { 
         switch (state) { 
          case Waiting: 
           if (c == '<') { 
            state = GettingToken; 
            token = new StringBuffer(); 
            body = new StringBuffer(); 
           } 
           break; 
         case GettingToken : 
          if (c == '>') 
           state = GettingBody; 
          else 
           token.append(c); 
         break; 
        case GettingBody : 
         if (c == ';') 
          state = Waiting; 
         else 
             body.append(c); 
         return true;  
     } 
     return false; 
    } 
    StringBuffer getToken() { 
      return token; 
    } 
    StringBuffer getBody() { 
      return body; 
    } 
  private  
    final static int Waiting = 0; 
    final static int GettingToken = 1; 
    final static int GettingBody = 2; 
    int state = Waiting; 
    StringBuffer token, body; 
  } 

This requires a little cleverness. The forward engineering tool must generate the necessary 
private attributes and final static constants. 

Reverse engineering (the creation of a model from code) is theoretically possible, but practically 
not very useful. The choice of what constitutes a meaningful state is in the eye of the designer. 



Reverse engineering tools have no capacity for abstraction and therefore cannot automatically 
produce meaningful statechart diagrams. More interesting than the reverse engineering of a 
model from code is the animation of a model against the execution of a deployed system. For 
example, given the previous diagram, a tool could animate the states in the diagram as they were 
reached in the running system. Similarly, the firing of transitions could be animated, showing the 
receipt of events and the resulting dispatch of actions. Under the control of a debugger, you could 
control the speed of execution, setting breakpoints to stop the action at interesting states to 
examine the attribute values of individual objects. 

Hints and Tips 
When you create statechart diagrams in the UML, remember that every statechart diagram is just 
a projection on the same model of a system's dynamic aspects. A single statechart diagram can 
capture the semantics of a single reactive object, but no one statechart diagram can capture the 
semantics of an entire nontrivial system. 

A well-structured statechart diagram 

• Is focused on communicating one aspect of a system's dynamics. 

• Contains only those elements that are essential to understanding that aspect. 

• Provides detail consistent with its level of abstraction (expose only those features that are 
essential to understanding). 

• Uses a balance between the styles of Mealy and Moore machines. 

When you draw a statechart diagram, 

• Give it a name that communicates its purpose. 

• Start with modeling the stable states of the object, then follow with modeling the legal 
transitions from state to state. Address branching, concurrency, and object flow as 
secondary considerations, possibly in separate diagrams. 

• Lay out its elements to minimize lines that cross. 

Part VI: Architectural Modeling 



 

 



Chapter 25. Components 
In this chapter 

• Components, interfaces, and realization 

• Modeling executables and libraries 

• Modeling tables, files, and documents 

• Modeling an API 

• Modeling source code 

• Mapping between logical and physical models 

Components live in the material world of bits and therefore are an important building block in 
modeling the physical aspects of a system. A component is a physical and replaceable part of a 
system that conforms to and provides the realization of a set of interfaces. 

You use components to model the physical things that may reside on a node, such as 
executables, libraries, tables, files, and documents. A component typically represents the physical 
packaging of otherwise logical elements, such as classes, interfaces, and collaborations. 

Good components define crisp abstractions with well-defined interfaces, making it possible to 
easily replace older components with newer, compatible ones. 

Getting Started 
The end product of a construction company is a physical building that exists in the real world. You 
build logical models to visualize, specify, and document your decisions about the building 
envelope; the placement of walls, doors, and windows; the routing of electrical and plumbing 
systems; and the overall architectural style. When you actually construct the building, these walls, 
doors, windows, and other conceptual things get turned into real, physical things. 

The differences between building a dog house and building a high rise are discussed in Chapter 
1. 

These logical and physical views are both necessary. If you are building a disposable building for 
which the cost of scrap and rework is essentially zero (for example, if you are building a 
doghouse), you can probably go straight to the physical building without doing any logical 
modeling. If, on the other hand, you are building something enduring for which the cost of change 
or failure is high, then building both logical and physical models is the pragmatic thing to do to 
manage risk. 

It's the same thing when building a software-intensive system. You do logical modeling to 
visualize, specify, and document your decisions about the vocabulary of your domain and the 
structural and behavioral way those things collaborate. You do physical modeling to construct the 
executable system. Whereas these logical things live in the conceptual world, the physical things 
live in the world of bits• that is, they ultimately reside on physical nodes and can be executed 
directly or can, in some indirect manner, participate in an executing system. 

Interfaces are discussed in Chapter 11. 

In the UML, all these physical things are modeled as components. A component is a physical 
thing that conforms to and realizes a set of interfaces. Interfaces therefore bridge your logical and 



physical models. For example, you may specify an interface for a class in a logical model, and 
that same interface will carry over to some physical component that realizes it. 

In software, many operating systems and programming languages directly support the concept of 
a component. Object libraries, executables, COM+ components, and Enterprise Java Beans are 
all examples of components that may be represented directly in the UML by using components. 
Not only can components be used to model these kinds of things, they can also be used to 
represent other things that participate in an executing system, such as tables, files, and 
documents. 

Stereotypes are discussed in Chapter 6. 

The UML provides a graphical representation of a component, as Figure 25-1 shows. This 
canonical notation permits you to visualize a component apart from any operating system or 
programming language. Using stereotypes, one of the UML's extensibility mechanisms, you can 
tailor this notation to represent specific kinds of components. 

Figure 25-1 Components 

 

Terms and Concepts 
A component is a physical and replaceable part of a system that conforms to and provides the 
realization of a set of interfaces. Graphically, a component is rendered as a rectangle with tabs. 

Names 

A component name must be unique within its enclosing package, as discussed in Chapter 12; 
tagged values and compartments are discussed in Chapter 6. 

Every component must have a name that distinguishes it from other components. A name is a 
textual string. That name alone is known as a simple name; a path name is the component name 
prefixed by the name of the package in which that component lives. A component is typically 
drawn showing only its name, as in Figure 25-2. Just as with classes, you may draw 
components adorned with tagged values or with additional compartments to expose their details, 
as you see in the figure. 

Figure 25-2 Simple and Extended Components 



 
Note 

A component name may be text consisting of any number of letters, numbers, and 
certain punctuation marks (except for marks such as the colon, which is used to 
separate a component name and the name of its enclosing package) and may 
continue over several lines. In practice, component names are short nouns or noun 
phrases drawn from the vocabulary of the implementation and, depending on your 
target operating system, include extensions (such as java and dll). 

 

Components and Classes 

Classes are discussed in Chapters 4 and 9; interactions are discussed in Chapter 15. 

In many ways, components are like classes: Both have names; both may realize a set of 
interfaces; both may participate in dependency, generalization, and association relationships; 
both may be nested; both may have instances; both may be participants in interactions. However, 
there are some significant differences between components and classes. 

• Classes represent logical abstractions; components represent physical things that live in 
the world of bits. In short, components may live on nodes, classes may not. 

• Components represent the physical packaging of otherwise logical components and are 
at a different level of abstraction. 

• Classes may have attributes and operations directly. In general, components only have 
operations that are reachable only through their interfaces. 

Nodes are discussed in Chapter 26. 

The first difference is the most important. When modeling a system, deciding if you should use a 
class or a component involves a simple decision• if the thing you are modeling lives directly on a 
node, use a component; otherwise, use a class. 

Dependency relationships are discussed in Chapters 5 and 10; collaborations are discussed in 
Chapter 27. 



The second difference suggests a relationship between classes and components. In particular, a 
component is the physical implementation of a set of other logical elements, such as classes and 
collaborations. As Figure 25-3 shows, the relationship between a component and the classes it 
implements can be shown explicitly by using a dependency relationship. Most of the time, you'll 
never need to visualize these relationships graphically. Rather, you will keep them as a part of the 
component's specification. 

Figure 25-3 Components and Classes 

 
Interfaces are discussed in Chapter 11. 

The third difference points out how interfaces bridge components and classes. As described in 
more detail in the next section, components and classes may both realize an interface, but a 
component's services are usually available only through its interfaces. 

Note 

Components are also class-like in that you can (but rarely do) specify attributes and 
operations for them. You will need to do so only if you're modeling a reflective system 
that can manipulate its own components. 

 

Components and Interfaces 

Interfaces are discussed in Chapter 11. 

An interface is a collection of operations that are used to specify a service of a class or a 
component. The relationship between component and interface is important. All the most 
common component-based operating system facilities (such as COM+, CORBA, and Enterprise 
Java Beans) use interfaces as the glue that binds components together. 



Modeling distributed systems is discussed in Chapter 23. 

Using one of these facilities, you decompose your physical implementation by specifying 
interfaces that represent the major seams in the system. You then provide components that 
realize the interfaces, along with other components that access the services through their 
interfaces. This mechanism permits you to deploy a system whose services are somewhat 
location-independent and, as discussed in the next section, replaceable. 

Realization is discussed in Chapter 10. 

As Figure 25-4 indicates, you can show the relationship between a component and its interfaces 
in one of two ways. The first (and most common) style renders the interface in its elided, iconic 
form. The component that realizes the interface is connected to the interface using an elided 
realization relationship. The second style renders the interface in its expanded form, perhaps 
revealing its operations. The component that realizes the interface is connected to the interface 
using a full realization relationship. In both cases, the component that accesses the services of 
the other component through the interface is connected to the interface using a dependency 
relationship. 

Figure 25-4 Components and Interfaces 

 
An interface that a component realizes is called an export interface, meaning an interface that the 
component provides as a service to other components. A component may provide many export 
interfaces. The interface that a component uses is called an import interface, meaning an 
interface that the component conforms to and so builds on. A component may conform to many 
import interfaces. Also, a component may both import and export interfaces. 

A given interface may be exported by one component and imported by another. The fact that this 
interface lies between the two components breaks the direct dependency between the 
components. A component that uses a given interface will function properly no matter what 
component realizes that interface. Of course, a component can be used in a context if and only if 
all its import interfaces are provided by the export interfaces of other components. 

Note 

Interfaces span logical and physical boundaries. The same interface you find used or 
realized by a component will be found used or realized by the classes that the 
component implements. 



 

Binary Replaceability 

The basic intent of every component-based operating system facility is to permit the assembly of 
systems from binary replaceable parts. This means that you can create a system out of 
components and then evolve that system by adding new components and replacing old ones, 
without rebuilding the system. Interfaces are the key to making this happen. When you specify an 
interface, you can drop into the executable system any component that conforms to or provides 
that interface. You can extend the system by making the components provide new services 
through other interfaces, which, in turn, other components can discover and use. These 
semantics explain the intent behind the definition of components in the UML. A component is a 
physical and replaceable part of a system that conforms to and provides the realization of a set of 
interfaces. 

First, a component is physical. It lives in the world of bits, not concepts. 

Second, a component is replaceable. A component is substitutable• it is possible to replace a 
component with another that conforms to the same interfaces. Typically, the mechanism of 
inserting or replacing a component to form a run time system is transparent to the component 
user and is enabled by object models (such as COM+ and Enterprise Java Beans) that require 
little or no intervening transformation or by tools that automate the mechanism. 

Systems and subsystems are discussed in Chapter 31. 

Third, a component is part of a system. A component rarely stands alone. Rather, a given 
component collaborates with other components and in so doing exists in the architectural or 
technology context in which it is intended to be used. A component is logically and physically 
cohesive and thus denotes a meaningful structural and/or behavioral chunk of a larger system. A 
component may be reused across many systems. Therefore, a component represents a 
fundamental building block on which systems can be designed and composed. This definition is 
recursive• a system at one level of abstraction may simply be a component at a higher level of 
abstraction. 

Fourth, as discussed in the previous section, a component conforms to and provides the 
realization of a set of interfaces. 

Kinds of Components 

Three kinds of components may be distinguished. 

First, there are deployment components. These are the components necessary and sufficient to 
form an executable system, such as dynamic libraries (DLLs) and executables (EXEs). The 
UML's definition of component is broad enough to address classic object models, such as COM+, 
CORBA, and Enterprise Java Beans, as well as alternative object models, perhaps involving 
dynamic Web pages, database tables, and executables using proprietary communication 
mechanisms. 

Second, there are work product components. These components are essentially the residue of 
the development process, consisting of things such as source code files and data files from which 
deployment components are created. These components do not directly participate in an 
executable system but are the work products of development that are used to create the 
executable system. 

Third are execution components. These components are created as a consequence of an 
executing system, such as a COM+ object, which is instantiated from a DLL. 



Organizing Components 

Packages are discussed in Chapter 12. 

You can organize components by grouping them in packages in the same manner in which you 
organize classes. 

Relationships are discussed in Chapters 5 and 10. 

You can also organize components by specifying dependency, generalization, association 
(including aggregation), and realization relationships among them. 

Standard Elements 

The UML's extensibility mechanisms are discussed in Chapter 6. 

All the UML's extensibility mechanisms apply to components. Most often, you'll use tagged values 
to extend component properties (such as specifying the version of a development component) 
and stereotypes to specify new kinds of components (such as operating system-specific 
components). 

The UML's standard elements are summarized in Appendix B. 

The UML defines five standard stereotypes that apply to components: 

1. 
executable  

Specifies a component that may be executed on a node 

2. library  Specifies a static or dynamic object library 
3. table  Specifies a component that represents a database table  
4. file  Specifies a component that represents a document containing source code or 

data 
5. document  Specifies a component that represents a document 

Note 

The UML does not specify defined icons for any of these stereotypes, although 
Appendix B offers some notation from common practice. 

Common Modeling Techniques 
Modeling Executables and Libraries 

The most common purpose for which you'll use components is to model the deployment 
components that make up your implementation. If you are deploying a trivial system whose 
implementation consists of exactly one executable file, you will not need to do any component 
modeling. If, on the other hand, the system you are deploying is made up of several executables 
and associated object libraries, doing component modeling will help you to visualize, specify, 
construct, and document the decisions you've made about the physical system. Component 
modeling is even more important if you want to control the versioning and configuration 
management of these parts as your system evolves. 

These decisions are also affected by the topology of your target system, as discussed in 
Chapter 26. 



For most systems, these deployment components are drawn from the decisions you make about 
how to segment the physical implementation of your system. These decisions will be affected by 
a number of technical issues (such as your choice of component-based operating system 
facilities), configuration management issues (such as your decisions about which parts will likely 
change over time), and reuse issues (that is, deciding which components you can reuse in or 
from other systems). 

To model executables and libraries, 

• Identify the partitioning of your physical system. Consider the impact of technical, 
configuration management, and reuse issues. 

• Model any executables and libraries as components, using the appropriate standard 
elements. If your implementation introduces new kinds of components, introduce a new 
appropriate stereotype. 

• If it's important for you to manage the seams in your system, model the significant 
interfaces that some components use and others realize. 

• As necessary to communicate your intent, model the relationships among these 
executables, libraries, and interfaces. Most often, you'll want to model the dependencies 
among these parts in order to visualize the impact of change. 

The UML's standard elements are summarized in Appendix B. 

For example, Figure 25-5 shows a set of components drawn from a personal productivity tool 
that runs on a single personal computer. This figure includes one executable (animator.exe, 
with a tagged value noting its version number) and four libraries (dlog.dll, wrfrme.dll, 
render.dll, and raytrce.dll), all of which use the UML's standard elements for executables 
and libraries, respectively. This diagram also presents the dependencies among these 
components. 

Figure 25-5 Modeling Executables and Libraries 



 
Note 

Directly showing a dependency between two components is actually an elided view of 
the real intercomponent relationships. A component rarely depends on another 
component directly but, rather, imports one or more interfaces exported by another. 
For example, you could have rewritten the figure above by indicating explicitly the 
interfaces that render.dll realizes (exports) and that animator.exe uses 
(imports). For simplicity, you can elide these details simply by showing a dependency 
between the two components. 

 

Packages are discussed in Chapter 12. 

As your models get bigger, you will find that many components tend to cluster together in groups 
that are conceptually and semantically related. In the UML, you can use packages to model these 
clusters of components. 

Modeling deployment is discussed in Chapter 26. 

For larger systems that are deployed across several computers, you'll want to model the way 
your components are distributed by asserting the nodes on which they are located. 

Modeling Tables, Files, and Documents 



Modeling the executables and libraries that make up the physical implementation of your system 
is useful, but often you'll find there are a host of ancillary deployment components that are neither 
executables nor libraries and yet are critical to the physical deployment of your system. For 
example, your implementation might include data files, help documents, scripts, log files, 
initialization files, and installation/removal files. Modeling these components is an important part 
of controlling the configuration of your system. Fortunately, you can use UML components to 
model all of these artifacts. 

To model tables, files, and documents, 

• Identify the ancillary components that are part of the physical implementation of your 
system. 

• Model these things as components. If your implementation introduces new kinds of 
artifacts, introduce a new appropriate stereotype. 

• As necessary to communicate your intent, model the relationships among these ancillary 
components and the other executables, libraries, and interfaces in your system. Most 
often, you'll want to model the dependencies among these parts in order to visualize the 
impact of change. 

For example, Figure 25-6 builds on the previous figure and shows the tables, files, and 
documents that are part of the deployed system surrounding the executable animator.exe. 
This figure includes one document (animator.hlp), one simple file (animator.ini), and one 
database table (shapes.tbl), all of which use the UML's standard elements for documents, 
files, and tables, respectively. 

Figure 25-6 Modeling Tables, Files, and Documents 



 
Modeling logical and physical databases are discussed in Chapters 8 and 29, respectively. 

Modeling databases can get complicated when you start dealing with multiple tables, triggers, 
and stored procedures. To visualize, specify, construct, and document these features, you'll need 
to model the logical schema, as well as the physical databases. 

Modeling an API 

If you are a developer who's assembling a system from component parts, you'll often want to see 
the application programming interfaces (APIs) that you can use to glue these parts together. APIs 
represent the programmatic seams in your system, which you can model using interfaces and 
components. 

An API is essentially an interface that is realized by one or more components. As a developer, 
you'll really care only about the interface itself; which component realizes an interface's 
operations is not relevant as long as some component realizes it. From a system configuration 
management perspective, though, these realizations are important because you need to ensure 
that, when you publish an API, there's some realization available that carries out the API's 
obligations. Fortunately, with the UML, you can model both perspectives. 

Interfaces are discussed in Chapter 11; use cases are discussed in Chapter 16. 

The operations associated with any semantically rich API will be fairly extensive, so most of the 
time you won't need to visualize all these operations at once. Instead, you'll tend to keep the 



operations in the backplane of your models and use interfaces as handles with which you can find 
these sets of operations. If you want to construct executable systems against these APIs, you will 
need to add enough detail so that your development tools can compile against the properties of 
your interfaces. Along with the signatures of each operation, you'll probably also want to include 
uses cases that explain how to use each interface. 

To model an API, 

• Identify the programmatic seams in your system and model each seam as an interface, 
collecting the attributes and operations that form this edge. 

• Expose only those properties of the interface that are important to visualize in the given 
context; otherwise, hide these properties, keeping them in the interface's specification for 
reference, as necessary. 

• Model the realization of each API only insofar as it is important to show the configuration 
of a specific implementation. 

Figure 25-7 exposes the APIs of the executable in the previous two figures. You'll see four 
interfaces that form the API of the executable: IApplication, IModels, IRendering, and 
IScripts. 

Figure 25-7 Modeling an API 

 
Modeling Source Code 

The most common purpose for which you'll use components is to model the physical parts that 
make up your implementation. This also includes the modeling of all the ancillary parts of your 
deployed system, including tables, files, documents, and APIs. The second most common 
purpose for which you'll use components is to model the configuration of all the source code files 
that your development tools use to create these components. These represent the work product 
components of your development process. 

Modeling source code graphically is particularly useful for visualizing the compilation 
dependencies among your source code files and for managing the splitting and merging of 



groups of these files when you fork and join development paths. In this manner, UML 
components can be the graphical interface to your configuration management and version control 
tools. 

For most systems, source code files are drawn from the decisions you make about how to 
segment the files your development environment needs. These files are used to store the details 
of your classes, interfaces, collaborations, and other logical elements as an intermediate step to 
creating the physical, binary components that are derived from these elements by your tools. 
Most of the time, these tools will impose a style of organization (one or two files per class is 
common), but you'll still want to visualize the relationships among these files. How you organize 
groups of these files using packages and how you manage versions of these files is driven by 
your decisions about how to manage change. 

To model source code, 

• Depending on the constraints imposed by your development tools, model the files used to 
store the details of all your logical elements, along with their compilation dependencies. 

• If it's important for you to bolt these models to your configuration management and 
version control tools, you'll want to include tagged values, such as version, author, and 
check in/check out information, for each file that's under configuration management. 

• As far as possible, let your development tools manage the relationships among these 
files, and use the UML only to visualize and document these relationships. 

For example, Figure 25-8 shows some source code files that are used to build the library 
render.dll from the previous examples. This figure includes four header files (render.h, 
rengine.h, poly.h, and colortab.h) that represent the source code for the specification of 
certain classes. There is also one implementation file (render.cpp) that represents the 
implementation of one of these headers. 

Figure 25-8 Modeling Source Code 



 
Packages are discussed in Chapter 12. 

As your models get bigger, you will find that many source code files tend to cluster together in 
groups that are conceptually and semantically related. Most of the time, your development tools 
will place these groups in separate directories. In the UML, you can use packages to model these 
clusters of source code files. 

Trace relationships, a kind of dependency, are discussed in Chapters 5 and 10. 

In the UML, it is possible to visualize the relationship of a class to its source code file and, in turn, 
the relationship of a source code file to its executable or library by using trace relationships. 
However, you'll rarely need to go to this detail of modeling. 

Hints and Tips 
When you model components in the UML, remember that you are modeling in the physical 
dimension. A well-structured component 

• Provides a crisp abstraction of something drawn from the physical aspect of the system. 

• Provides the realization of a small, well-defined set of interfaces. 

• Directly implements a set of classes that work together to carry out the semantics of 
these interfaces with economy and elegance. 

• Is loosely coupled relative to other components; most often, you'll model components 
only in connection with dependency and realization relationships. 

When you draw a component in the UML, 



• Use the iconic form of an interface unless it's necessary to explicitly reveal the operations 
offered by that interface. 

• Show only those interfaces that are necessary to understand the meaning of that 
component in the given context. 

• Especially if you are using components to model things such as libraries and source 
code, reveal the values of tags associated with versioning. 

Chapter 26. Deployment 
In this chapter 

• Nodes and connections 

• Modeling processors and devices 

• Modeling the distribution of components 

• Systems engineering 

Nodes, just like components, live in the material world and are an important building block in 
modeling the physical aspects of a system. A node is a physical element that exists at run time 
and represents a computational resource, generally having at least some memory and, often, 
processing capability. 

You use nodes to model the topology of the hardware on which your system executes. A node 
typically represents a processor or a device on which components may be deployed. 

Good nodes crisply represent the vocabulary of the hardware in your solution domain. 

Getting Started 
Modeling nonsoftware things is discussed in Chapter 4. 

The components you develop or reuse as part of a software-intensive system must be deployed 
on some set of hardware in order to execute. This is in effect what a software-intensive system is 
all about• such a system encompasses both software and hardware. 

The five views of an architecture are discussed in Chapter 2. 

When you architect a software-intensive system, you have to consider both its logical and 
physical dimensions. On the logical side, you'll find things such as classes, interfaces, 
collaborations, interactions, and state machines. On the physical side, you'll find components 
(which represent the physical packaging of these logical things) and nodes (which represent the 
hardware on which these components are deployed and execute). 

Stereotypes are discussed in Chapter 6. 

The UML provides a graphical representation of node, as Figure 26-1 shows. This canonical 
notation permits you to visualize a node apart from any specific hardware. Using stereotypes•
one of the UML's extensibility mechanisms•  you can (and often will) tailor this notation to 
represent specific kinds of processors and devices. 

Figure 26-1 Nodes 



 
Note 

The UML is mainly intended for modeling software-intensive systems, although the 
UML, in conjunction with textual hardware modeling languages, such as VHDL, can be 
quite expressive for modeling hardware systems. The UML is also sufficiently 
expressive for modeling the topologies of stand-alone, embedded, client/server, and 
distributed systems. 

Terms and Concepts 
A node is a physical element that exists at run time and represents a computational resource, 
generally having at least some memory and, often, processing capability. Graphically, a node is 
rendered as a cube. 

Names 

A node name must be unique within its enclosing package, as discussed in Chapter 12. 

Every node must have a name that distinguishes it from other nodes. A name is a textual string. 
That name alone is known as a simple name; a path name is the node name prefixed by the 
name of the package in which that node lives. A node is typically drawn showing only its name, 
as in Figure 26-2. Just as with classes, you may draw nodes adorned with tagged values or with 
additional compartments to expose their details. 

Figure 26-2 Simple and Extended Nodes 



 
Note 

A node name may be text consisting of any number of letters, numbers, and certain 
punctuation marks (except for marks such as the colon, which is used to separate a 
node name and the name of its enclosing package) and may continue over several 
lines. In practice, node names are short nouns or noun phrases drawn from the 
vocabulary of the implementation. 

 

Nodes and Components 

Components are discussed in Chapter 25. 

In many ways, nodes are a lot like components: Both have names; both may participate in 
dependency, generalization, and association relationships; both may be nested; both may have 
instances; both may be participants in interactions. However, there are some significant 
differences between nodes and components. 

• Components are things that participate in the execution of a system; nodes are things 
that execute components. 

• Components represent the physical packaging of otherwise logical elements; nodes 
represent the physical deployment of components. 

This first difference is the most important. Simply put, nodes execute components; components 
are things that are executed by nodes. 

Dependency relationships are discussed in Chapters 5 and 10. 

The second difference suggests a relationship among classes, components, and nodes. In 
particular, a component is the materialization of a set of other logical elements, such as classes 
and collaborations, and a node is the location upon which components are deployed. A class may 



be implemented by one or more components, and, in turn, a component may be deployed on one 
or more nodes. As Figure 26-3 shows, the relationship between a node and the components it 
deploys can be shown explicitly by using a dependency relationship. Most of the time, you won't 
need to visualize these relationships graphically but will keep them as a part of the node's 
specification. 

Figure 26-3 Nodes and Components 

 
A set of objects or components that are allocated to a node as a group is called a distribution unit. 

Note 

Nodes are also class-like in that you can specify attributes and operations for them. 
For example, you might specify that a node provides the attributes processorSpeed 
and memory, as well as the operations turnOn, turnOff, and suspend. 

 

Organizing Nodes 

Packages are discussed in Chapter 12. 

You can organize nodes by grouping them in packages in the same manner in which you can 
organize classes and components. 



Relationships are discussed in Chapters 5 and 10. 

You can also organize nodes by specifying dependency, generalization, and association 
(including aggregation) relationships among them. 

Connections 

The most common kind of relationship you'll use among nodes is an association. In this context, 
an association represents a physical connection among nodes, such as an Ethernet connection, 
a serial line, or a shared bus, as Figure 26-4 shows. You can even use associations to model 
indirect connections, such as a satellite link between distant processors. 

Figure 26-4 Connections 

 
Because nodes are class-like, you have the full power of associations at your disposal. This 
means that you can include roles, multiplicity, and constraints. As in the previous figure, you 
should stereotype these associations if you want to model new kinds of connections• for 
example, to distinguish between a 10-T Ethernet connection and an RS-232 serial connection. 

Common Modeling Techniques 

Modeling Processors and Devices 

Modeling the processors and devices that form the topology of a stand-alone, embedded, 
client/server, or distributed system is the most common use of nodes. 

The UML's extensibility mechanisms are discussed in Chapter 6. 

Because all of the UML's extensibility mechanisms apply to nodes, you will often use stereotypes 
to specify new kinds of nodes that you can use to represent specific kinds of processors and 
devices. A processor is a node that has processing capability, meaning that it can execute a 
component. A device is a node that has no processing capability (at least, none that are modeled 
at this level of abstraction) and, in general, represents something that interfaces to the real world. 

To model processors and devices, 

• Identify the computational elements of your system's deployment view and model each 
as a node. 



• If these elements represent generic processors and devices, then stereotype them as 
such. If they are kinds of processors and devices that are part of the vocabulary of your 
domain, then specify an appropriate stereotype with an icon for each. 

• As with class modeling, consider the attributes and operations that might apply to each 
node. 

For example, Figure 26-5 takes the previous diagram and stereotypes each node. The server 
is a node stereotyped as a generic processor; the kiosk and the console are nodes 
stereotyped as special kinds of processors; and the RAID farm is a node stereotyped as a 
special kind of device. 

Figure 26-5 Processors and Devices 

 
Note 

Nodes are probably the most stereotyped building block in the UML. When, as part of 
systems engineering, you model the deployment view of a software-intensive system, 
there's great value in providing visual cues that speak to your intended audience. If 
you are modeling a processor that's a common kind of computer, render it with an icon 
that looks like that computer. If you are modeling a common device, such as a cellular 
phone, fax, modem, or camera, render it with an icon that looks like that device. 

 

Modeling the Distribution of Components 

The semantics of location are discussed in Chapter 23. 

When you model the topology of a system, it's often useful to visualize or specify the physical 
distribution of its components across the processors and devices that make up the system. 

To model the distribution of components, 

• For each significant component in your system, allocate it to a given node. 



• Consider duplicate locations for components. It's not uncommon for the same kind of 
component (such as specific executables and libraries) to reside on multiple nodes 
simultaneously. 

• Render this allocation in one of three ways. 

1. Don't make the allocation visible, but leave it as part of the backplane of your 
model• that is, in each node's specification. 

2. Using dependency relationships, connect each node with the components it 
deploys. 

3. List the components deployed on a node in an additional compartment. 

Instances are discussed in Chapter 11; object diagrams are discussed in Chapter 14. 

Using the third approach, Figure 26-6 takes the earlier diagrams and specifies the executable 
components that reside on each node. This diagram is a bit different from the previous ones in 
that it is an object diagram, visualizing specific instances of each node. In this case, the RAID 
farm and kiosk instances are both anonymous and the other two instances are named (c for 
the console and s for the server). Each processor in this figure is rendered with an additional 
compartment showing the component it deploys. The server object is also rendered with its 
attributes (processorSpeed and memory) and their values visible. 

Figure 26-6 Modeling the Distribution of Components. 

 
The migration of components across nodes is discussed in Chapter 30. 

Components need not be statically distributed across the nodes in a system. In the UML, it is 
possible to model the dynamic migration of components from node to node, as in an agent-based 
system or a high-reliability system that involves clustered servers and replicated databases. 

Hints and Tips 
A well-structured node 

• Provides a crisp abstraction of something drawn from the vocabulary of the hardware in 
your solution domain. 

• Is decomposed only to the level necessary to communicate your intent to the reader. 



• Exposes only those attributes and operations that are relevant to the domain you are 
modeling. 

• Directly deploys a set of components that reside on the node. 

• Is connected to other nodes in a manner that reflects the topology of the real world 
system. 

When you draw a node in the UML, 

• For your project or organization as a whole, define a set of stereotypes with appropriate 
icons to provide meaningful visual cues to your readers. 

• Show only the attributes and operations (if any) that are necessary to understand the 
meaning of that node in the given context. 

Chapter 27. Collaborations 
In this chapter 

• Collaborations, realizations, and interactions 

• Modeling the realization of a use case 

• Modeling the realization of an operation 

• Modeling a mechanism 

• Reifying interactions 

In the context of a system's architecture, a collaboration allows you to name a conceptual chunk 
that encompasses both static and dynamic aspects. A collaboration names a society of classes, 
interfaces, and other elements that work together to provide some cooperative behavior that's 
bigger than the sum of all its parts. 

You use collaborations to specify the realization of use cases and operations, and to model the 
architecturally significant mechanisms of your system. 

Getting Started 
Think about the most beautiful building you've even seen• perhaps the Taj Mahal or Notre 
Dame. Both structures exhibit a quality that's hard to name. In many ways, both structures are 
architecturally simple, yet they are also profoundly deep. In each, you can immediately recognize 
a consistent symmetry. Look harder, and you'll see details that are themselves beautiful and that 
work together to produce a beauty and functionality that's greater than the individual parts. 

Now think about the ugliest building you've even seen• perhaps your local fast food outlet. You'll 
find a visual cacophony of architectural styles• a touch of modernism combined with a Georgian 
roof line, all decorated in a jarring fashion, with bold colors that assault the eye. Usually, these 
buildings are pure manipulation, with narrow function and hardly any form. 

What's the difference between these two kinds of civil architecture? First, in buildings of quality, 
you'll find a harmony of design that's lacking in the others. Quality architecture uses a small set of 
architectural styles applied in a consistent fashion. For example, the Taj Mahal uses complex, 
symmetrical, and balanced geometric elements throughout. Second, in buildings of quality, you'll 
find common patterns that transcend the building's individual elements. For example, in Notre 



Dame, certain walls are load bearing and serve to support the cathedral's dome. Yet some of 
these same walls, along with other architectural details, serve as part of the building's system for 
diverting water and waste. 

The five views of an architecture are discussed in Chapter 2. 

So it is with software. A quality software-intensive system is not only functionally sound, but it also 
exhibits a harmony and balance of design that makes it resilient to change. This harmony and 
balance most often come from the fact that all well-structured object-oriented systems are full of 
patterns. Look at any quality object-oriented system, and you'll see elements that work together in 
common ways to provide some cooperative behavior that's bigger than the sum of all its parts. In 
a well-structured system, many of the elements, in various combinations, will participate in 
different mechanisms. 

Patterns and frameworks are discussed in Chapter 28. 

Note 

A pattern provides a common solution to a common problem in some context. In any 
well-structured system, you'll find a spectrum of patterns, including idioms 
(representing common ways of programming), mechanisms (design patterns that 
represent conceptual chunks of a system's architecture), and frameworks 
(architectural patterns that provide extensible templates for applications within a 
domain). 

 

Structural modeling is discussed in Sections 2 and 3; behavioral modeling is discussed in 
Sections 4 and 5; interactions are discussed in Chapter 15. 

In the UML, you model mechanisms using collaborations. A collaboration gives a name to the 
conceptual building blocks of your system, encompassing both structural and behavioral 
elements. For example, you might have a distributed management information system whose 
databases are spread across several nodes. From the user's perspective, updating information 
looks atomic; from the inside perspective, it's not so simple, because such an action has to touch 
multiple machines. To give the illusion of simplicity, you'd want to devise a transaction 
mechanism with which a client could name what looks like a single, atomic transaction, even 
across various databases. Such a mechanism would span multiple classes working together to 
carry out a transaction. Many of these classes would be involved in other mechanisms as well, 
such as mechanisms for making information persistent. This collection of classes (the structural 
part), together with their interactions (the behavioral part), forms a mechanism, which, in the 
UML, you can represent as a collaboration. 

Use cases are discussed in Chapter 16; operations are discussed in Chapters 4 and 9. 

Collaborations not only name a system's mechanisms, they also serve as the realization of use 
cases and operations. 

The UML provides a graphical representation for collaborations, as Figure 27-1 shows. This 
notation permits you to visualize the structural and behavioral building blocks of a system, 
especially as they may overlap the classes, interfaces, and other elements of the system. 

Figure 27-1 Collaborations 



 
Class diagrams are discussed in Chapter 8; interaction diagrams are discussed in Chapter 18. 

Note 

This notation lets you visualize a collaboration from the outside as one chunk. What's 
often more interesting is what's inside this notation. Zoom into a collaboration, and 
you'll be led to other diagrams•  most notably, class diagrams (for the collaboration's 
structural part) and interaction diagrams (for the collaboration's behavioral part). 

Terms and Concepts 
The notation for collaborations is intentionally similar to that for use cases, as discussed in 
Chapter 16. 

A collaboration is a society of classes, interfaces, and other elements that work together to 
provide some cooperative behavior that's bigger than the sum of all its parts. A collaboration is 
also the specification of how an element, such as a classifier (including a class, interface, 
component, node, or use case) or an operation, is realized by a set of classifiers and associations 
playing specific roles used in a specific way. Graphically, a collaboration is rendered as an ellipse 
with dashed lines. 

Names 

A collaboration name must be unique within its enclosing package, as discussed in Chapter 12. 

Every collaboration must have a name that distinguishes it from other collaborations. A name is a 
textual string. That name alone is known as a simple name; a path name is the collaboration 
name prefixed by the name of the package in which that collaboration lives. Typically, a 
collaboration is drawn showing only its name, as in the previous figure. 

Note 

A collaboration name may be text consisting of any number of letters, numbers, and 
certain punctuation marks (except for marks such as the colon, which is used to 
separate a collaboration name and the name of its enclosing package) and may 
continue over several lines. In practice, collaboration names are short nouns or noun 
phrases drawn from the vocabulary of the system you are modeling. Typically, you 
capitalize the first letter of a collaboration name, as in Transaction or Chain of 
responsibility. 

 

Structure 



Structural elements are discussed in Sections 2 and 3. 

Collaborations have two aspects: a structural part that specifies the classes, interfaces, and other 
elements that work together to carry out the named collaboration, and a behavioral part that 
specifies the dynamics of how those elements interact. 

Classifiers are discussed in Chapter 9; relationships are discussed in Chapters 5 and 10. 

The structural part of a collaboration may include any combination of classifiers, such as classes, 
interfaces, components, and nodes. Within a collaboration, these classifiers may be organized 
using all the usual UML relationships, including associations, generalizations, and dependencies. 
In fact, the structural aspects of a collaboration may use the full range of the UML's structural 
modeling facilities. 

Packages are discussed in Chapter 12; subsystems are discussed in Chapter 31; use cases 
are discussed in Chapter 16. 

However, unlike packages or subsystems, a collaboration does not own any of its structural 
elements. Rather, a collaboration simply references or uses the classes, interfaces, components, 
nodes, and other structural elements that are declared elsewhere. That's why a collaboration 
names a conceptual chunk•  not a physical chunk• of a system's architecture. Therefore, a 
collaboration may cut across many levels of a system. Furthermore, the same element may 
appear in more than one collaboration (and some elements will not be named as part of any 
collaboration at all). 

For example, given a Web-based retail system described by a dozen or so use cases (such as 
Purchase Items, Return Items, and Query Order), each use case will be realized by a 
single collaboration. In addition, each of these collaborations will share some of the same 
structural elements (such as the classes Customer and Order), but they will be organized in 
different ways. You'll also find collaborations deeper inside the system, which represent 
architecturally significant mechanisms. For example, in this same retail system, you might have a 
collaboration called Internode messaging that specifies the details of secure messaging 
among nodes. 

Class diagrams are discussed in Chapter 8. 

Given a collaboration that names a conceptual chunk of a system, you can zoom inside that 
collaboration to expose the structural details of its parts. For example, Figure 27-2 illustrates 
how zooming inside the collaboration Internode messaging might reveal the following set of 
classes, rendered in a class diagram. 

Figure 27-2 Structural Aspects of a Collaboration 



 
Behavior 

Interaction diagrams are discussed in Chapter 18; instances are discussed in Chapter 13. 

Whereas the structural part of a collaboration is typically rendered using a class diagram, the 
behavioral part of a collaboration is typically rendered using an interaction diagram. An interaction 
diagram specifies an interaction that represents a behavior comprised of a set of messages that 
are exchanged among a set of objects within a context to accomplish a specific purpose. An 
interaction's context is provided by its enclosing collaboration, which establishes the classes, 
interfaces, components, nodes, and other structural elements whose instances may participate in 
that interaction. 

The behavioral part of a collaboration may be specified by one or more interaction diagrams. If 
you want to emphasize the time ordering of messages, use a sequence diagram. If you want to 
emphasize the structural relationships among these objects as they collaborate, use a 
collaboration diagram. Either diagram is appropriate because, for most purposes, they are 
semantically equivalent. 

This means that when you model a society of classes by naming their interaction as a 
collaboration, you can zoom inside that collaboration to expose the details of their behavior. For 
example, zooming inside the collaboration named Internode messaging might reveal the 
interaction diagram shown in Figure 27-3. 

Figure 27-3 Behavioral Aspects of a Collaboration 



 
Note 

The behavioral parts of a collaboration must be consistent with its structural parts. This 
means that the objects found in a collaboration's interactions must be instances of 
classes found in its structural part. Similarly, the messages named in an interaction 
must relate to operations visible in the collaboration's structural part. You can have 
more than one interaction associated with a collaboration, each of which may show a 
different• but consistent• aspect of its behavior. 

 

Organizing Collaborations 

The heart of a system's architecture is found in its collaborations, because the mechanisms that 
shape a system represent significant design decisions. All well-structured object-oriented systems 
are composed of a modestly sized and regular set of such collaborations, so it's important for you 
to organize your collaborations well. There are two kinds of relationships concerning 
collaborations that you'll need to consider. 

Use cases are discussed in Chapter 16; operations are discussed in Chapters 4 and 9; 
realization relationships are discussed in Chapter 10. 

First, there is the relationship between a collaboration and the thing it realizes. A collaboration 
may realize either a classifier or an operation, which means that the collaboration specifies the 
structural and behavioral realization of that classifier or operation. For example, a use case 
(which names a set of sequences of actions that a system performs) may be realized by a 
collaboration. That use case, including its associated actors and neighboring use cases, provides 
a context for the collaboration. Similarly, an operation (which names the implementation of a 
service) may be realized by a collaboration. That operation, including its parameters and possible 
return value, also provides a context for the collaboration. The relationship between a use case or 
an operation and the collaboration that realizes it is modeled as a realization relationship. 

Classifiers are discussed in Chapter 9. 

Note 



A collaboration may realize any kind of classifier, including classes, use cases, 
interfaces, components, and nodes. A collaboration that models a mechanism of the 
system may also stand alone, therefore its context is the system as a whole. 

 
Second, there is the relationship among collaborations. Collaborations may refine other 
collaborations, and you also model this relationship as a refinement. The refinement relationships 
among collaborations typically mirror the refinement relationships among the use cases they 
represent. 

Figure 27-4 illustrates these two kinds of relationships. 

Figure 27-4 Organizing Collaborations 

 
Packages are discussed in Chapter 12. 

Note 

Collaborations, like any other modeling element in the UML, may be grouped into 
larger packages. Typically, you'll only need to do this for very large systems. 

Common Modeling Techniques 

Modeling the Realization of a Use Case 

Use cases are discussed in Chapter 16. 



One of the purposes for which you'll use collaborations is to model the realization of a use case. 
You'll typically drive the analysis of your system by identifying your system's use cases, but when 
you finally turn to implementation, you'll need to realize these use cases with concrete structures 
and behaviors. In general, every use case should be realized by one or more collaborations. For 
the system as a whole, the classifiers involved in a given collaboration that is linked to a use case 
will participate in other collaborations, as well. In this way, the structural contents of collaborations 
tend to overlap one another. 

To model the realization of a use case, 

• Identify those structural elements necessary and sufficient to carry out the semantics of 
the use case. 

• Capture the organization of these structural elements in class diagrams. 

• Consider the individual scenarios that represent this use case. Each scenario represents 
a specific path through the use case. 

• Capture the dynamics of these scenarios in interaction diagrams. Use sequence 
diagrams if you want to emphasize the time ordering of messages. Use collaboration 
diagrams if you want to emphasize the structural relationships among these objects as 
they collaborate. 

• Organize these structural and behavioral elements as a collaboration that you can 
connect to the use case via realization. 

For example, Figure 27-5 shows a set of use cases drawn from a credit card validation system, 
including the primary use cases Place order and Generate bill, together with two other 
subordinate use cases, Detect card fraud and Validate transaction. Although most 
of the time you won't need to model this relationship explicitly (but will leave it up to your tools), 
this figure explicitly models the realization of Place order by the collaboration Order 
management. In turn, this collaboration can be further expanded into its structural and 
behavioral aspects, leading you to class diagrams and interaction diagrams. It is through the 
realization relationship that you connect a use case to its scenarios. 

Figure 27-5 Modeling the Realization of a Use Case 



 
In most cases, you won't need to model the relationship between a use case and the 
collaboration that realizes it explicitly. Instead, you'll tend to leave that in the backplane of your 
model. Then let tools use that connection to help you navigate between a use case and its 
realization. 

Modeling the Realization of an Operation 

Operations are discussed in Chapters 4 and 9 

Another purpose for which you'll use collaborations is to model the realization of an operation. In 
many cases, you can specify the realization of an operation by going straight to code. However, 
for those operations that require the collaboration of a number of objects, it's better to model their 
implementation via collaborations before you dive into code. 

Activity diagrams are discussed in Chapter 19. 

Note 

You can also model an operation using activity diagrams. Activity diagrams are 
essentially flowcharts. So for those algorithmically intensive operations that you want 
to model explicitly, activity diagrams are usually the best choice. However, if your 
operation requires the participation of many objects, you'll want to use collaborations, 
because they let you model the structural, as well as behavioral, aspects of an 
operation. 

 
The parameters, return value, and objects local to an operation provide the context for its 
realization. Therefore, these elements are visible to the structural aspect of the collaboration that 



realizes the operation, just as actors are visible to the structural aspect of a collaboration that 
realizes a use case. You can model the relationship among these parts using class diagrams that 
specify the structural part of a collaboration 

To model the implementation of an operation, 

Notes are discussed in Chapter 6. 

• Identify the parameters, return value, and other objects visible to the operation. 

• If the operation is trivial, represent its implementation directly in code, which you can 
keep in the backplane of your model, or explicitly visualize it in a note. 

• If the operation is algorithmically intensive, model its realization using an activity diagram. 

• If the operation is complex or otherwise requires some detailed design work, represent its 
implementation as a collaboration. You can further expand the structural and behavioral 
parts of this collaboration using class and interaction diagrams, respectively. 

Active classes are discussed in Chapter 22. 

For example, Figure 27-6 shows the active class RenderFrame with three of its operations 
exposed. The function progress is simple enough to be implemented directly in code, as 
specified in the attached note. However, the operation render is much more complicated, so its 
implementation is realized by the collaboration Ray trace. Although not shown here, you could 
zoom inside the collaboration to see its structural and behavioral aspects. 

Figure 27-6 Modeling the Realization of an Operation 

 
Modeling a Mechanism 

Patterns and frameworks are discussed in Chapter 28; an example of modeling a mechanism is 
discussed in the same chapter. 

In all well-structured object-oriented systems, you'll find a spectrum of patterns. At one end, you'll 
find idioms that represent patterns of use of the implementation language. At the other end, you'll 
find architectural patterns and frameworks that shape the system as a whole and impose a 
particular style. In the middle, you'll find mechanisms that represent common design patterns by 
which the things in the system interact with one another in common ways. You can represent a 
mechanism in the UML as a collaboration. 



Mechanisms are collaborations that stand alone; their context is not a single use case or an 
operation but, rather, the system as a whole. Any element visible in that part of the system is a 
candidate for participation in a mechanism. 

Mechanisms such as these represent architecturally significant design decisions and should not 
be treated lightly. Typically, your system's architect will devise its mechanisms, and you'll evolve 
these mechanisms with each new release. At the end, you'll find your system simple (because 
these mechanisms reify common interactions), understandable (because you can approach the 
system from its mechanisms), and resilient (by tuning each mechanism, you tune the system as a 
whole). 

To model a mechanism, 

• Identify the major mechanisms that shape your system's architecture. These mechanisms 
are driven by the overall architectural style you choose to impose on your 
implementation, along with the style appropriate to your problem domain. 

• Represent each of these mechanisms as a collaboration. 

• Expand on the structural and behavioral part of each collaboration. Look for sharing, 
where possible. 

• Validate these mechanisms early in the development lifecycle (they are of strategic 
importance), but evolve them with each new release, as you learn more about the details 
of your implementation. 

Hints and Tips 
When you model collaborations in the UML, remember that every collaboration should represent 
either the realization of a use case or operation or should stand alone as a mechanism of the 
system. A well-structured collaboration 

• Consists of both structural and behavioral aspects. 

• Provides a crisp abstraction of some identifiable interaction in the system. 

• Is rarely completely independent, but will overlap with the structural elements of other 
collaborations. 

• Is understandable and simple. 

When you draw a collaboration in the UML, 

• Explicitly render a collaboration only when it's necessary to understand its relationship to 
other collaborations, classifiers, operations, or the system as a whole. Otherwise, use 
collaborations, but keep them in the backplane. 

• Organize collaborations according to the classifier or operation they represent, or in 
packages associated with the system as a whole. 

Chapter 28. Patterns and Frameworks 
In this chapter 

• Patterns and frameworks 



• Modeling design patterns 

• Modeling architectural patterns 

• Making patterns approachable 

All well-structured systems are full of patterns. A pattern provides a common solution to a 
common problem in a given context. A mechanism is a design pattern that applies to a society of 
classes; a framework is typically an architectural pattern that provides an extensible template for 
applications within a domain. 

You use patterns to specify mechanisms and frameworks that shape the architecture of your 
system. You make a pattern approachable by clearly identifying the slots, tabs, knobs, and dials 
that a user of that pattern may adjust in order to apply the pattern in a particular context. 

Getting Started 
It's amazing to think of the various ways you can assemble a pile of lumber to build a house. In 
the hands of a master builder in San Francisco, you might see that pile transformed into a 
Victorian-style house, complete with a gabled roof line and brightly colored, storybook siding. In 
the hands of a master builder in Maine, you might see that same pile transformed into saltbox 
house, with clapboard siding and rectangular shapes throughout. 

From the outside, these two houses represent clearly different architectural styles. Every builder, 
drawing from experience, must choose a style that best meets the needs of his or her customer, 
and then adapt that style to the customer's wishes and the constraints of the building site and 
local covenants. 

For the inside, each builder must also design the house to solve some common problems. There 
are only so many proven ways to engineer trusses to support a roof; there are only so many 
proven ways to design a load-bearing wall that must also handle openings for doors and 
windows. Every builder must select the appropriate mechanisms that solve these common 
problems, adapted to an overall architectural style and the constraints of local building codes. 

Building a software-intensive system is just like that. Every time you raise your eyes above 
individual lines of code, you'll find common mechanisms that shape the way you organize your 
classes and other abstractions. For example, in an event-driven system, using the chain of 
responsibility design pattern is a common way to organize event handlers. Raise your eyes above 
the level of these mechanisms, and you'll find common frameworks that shape your system's 
entire architecture. For example, in information systems, using a three-tier architecture is a 
common way to achieve a clear separation of concerns among the system's user interface, its 
persistent information, and its business objects and rules. 

Collaborations are discussed in Chapter 27; packages are discussed in Chapter 12. 

In the UML, you will typically model design patterns• also called mechanisms• which you can 
represent as collaborations. Similarly, you will typically model architectural patterns as 
frameworks, which you can represent as stereotyped packages. 

The UML provides a graphical representation for both kinds of patterns, as Figure 28-1 shows. 

Figure 28-1 Mechanisms and Frameworks 



 

Terms and Concepts 
A pattern is a common solution to a common problem in a given context. A mechanism is a 
design pattern that applies to a society of classes. A framework is an architectural pattern that 
provides an extensible template for applications within a domain. 

Patterns and Architecture 

Software architecture is discussed in Chapter 2. 

Whether you're architecting a new system or evolving an existing one, you never really start from 
scratch. Rather, experience and convention will lead you to apply common ways to solve 
common problems. For example, if you are building a user-intensive system, one proven way to 
organize your abstractions is to use a model-view-controller pattern, in which you clearly separate 
objects (the model) from their presentation (the view) and the agents that keep the two in sync 
(the controller). Similarly, if you are building a system for solving cryptograms, one proven way to 
organize your system is to use a blackboard architecture, which is well-suited to attacking 
intractable problems in opportunistic ways. 

Both of these are examples of patterns• common solutions to common problems in a given 
context. In all well-structured systems, you'll find lots of patterns at various levels of abstraction. 
Design patterns specify the structure and behavior of a society of classes; architectural patterns 
specify the structure and behavior of an entire system. 

Patterns are part of the UML simply because patterns are important parts of a developer's 
vocabulary. By making the patterns in your system explicit, you make your system far more 
understandable and easier to evolve and maintain. For example, if you are handed a new, raw 
body of code to extend, you'll struggle for a while trying to figure out how it all fits together. On the 
other hand, if you are handed that same body of code and told, "These classes collaborate using 
a publish-and-subscribe mechanism," you will be a lot further down the path of understanding 
how it works. The same idea applies to a system as a whole. Saying "This system is organized as 
a set of pipes and filters" explains a great deal about the system's architecture that would 
otherwise be difficult to comprehend just by starting at individual classes. 

Patterns help you to visualize, specify, construct, and document the artifacts of a software-
intensive system. You can forward engineer a system by selecting an appropriate set of patterns 
and applying them to the abstractions specific to your domain. You can also reverse engineer a 
system by discovering the patterns it embodies, although that's hardly a perfect process. Even 



better, when you deliver a system, you can specify the patterns it embodies so that when 
someone later tries to reuse or adapt that system, its patterns will be clearly manifest. 

In practice, there are two kinds of patterns of interest• design patterns and frameworks• and the 
UML provides a means of modeling both. When you model either pattern, you'll find that it 
typically stands alone in the context of some larger package, except for dependency relationships 
bind them to other parts of your system. 

Mechanisms 

A mechanism is just another name for a design pattern that applies to a society of classes. For 
example, one common design problem you'll encounter in Java is adapting a class that knows 
how to respond to a certain set of events so that it responds to a slightly different set, without 
altering the original class. A common solution to this problem is the adaptor pattern, a structural 
design pattern that converts one interface to another. This pattern is so common that it makes 
sense to name it and then model it so that you can use it anytime you encounter a similar 
problem. 

In modeling, these mechanisms show up in two ways. 

Collaborations are discussed in Chapter 27. 

First, as shown in the previous figure, a mechanism simply names a set of abstractions that work 
together to carry out some common and interesting behavior. You model these mechanisms as 
plain collaborations because they just name a society of classes. Zoom into that collaboration, 
and you'll see its structural aspects (typically rendered as class diagrams), as well as its 
behavioral aspects (typically rendered as interaction diagrams). Collaborations such as these cut 
across individual abstractions in the system; a given class will likely be a member of many 
collaborations. 

Template classes are discussed in Chapter 9. 

Second, as shown in Figure 28-2, a mechanism names a template for a set of abstractions that 
work together to carry out some common and interesting behavior. You model these mechanisms 
as parameterized collaborations, which are rendered in the UML similar to the way template 
classes are rendered. Zoom into that collaboration, and you'll see its structural and behavioral 
aspects. Zoom out of the collaboration, and you'll see how that pattern applies to your system by 
binding the template parts of the collaboration to existing abstractions in your system. When you 
model a mechanism as a parameterized collaboration, you identify the slots, tabs, knobs, and 
dials you use to adapt that pattern by means of its template parameters. Collaborations such as 
these may appear repeatedly in your system, bound to different sets of abstractions. In this 
example, the Subject and the Observer of the pattern are bound to the concrete classes 
TaskQueue and SliderBar, respectively. 

Figure 28-2 Mechanisms 



 
Note 

Deciding to model a mechanism as a plain collaboration versus a parameterized one 
is straightforward. Use a plain collaboration if all you are doing is naming a specific 
society of classes in your system that work together; use a template collaboration if 
you can abstract the essential structural and behavioral aspects of the mechanism in a 
completely domain-independent way, which you can then bind to your abstractions in 
a given context. 

 

Frameworks 

A framework is an architectural pattern that provides an extensible template for applications 
within a domain. For example, one common architectural pattern you'll encounter in real time 
systems is a cyclic executive, which divides time into frames and subframes, during which 
processing takes place under strict deadlines. Choosing this pattern versus its alternative (an 
even-driven architecture) colors your entire system. Because this pattern (and its alternative) is 
so common, it makes sense to name it as a framework. 

The five views of an architecture are discussed in Chapter 2. 

A framework is bigger than a mechanism. In fact, you can think of a framework as a kind of micro-
architecture that encompasses a set of mechanisms that work together to solve a common 
problem for a common domain. When you specify a framework, you specify the skeleton of an 
architecture, together with the slots, tabs, knobs, and dials that you expose to users who want to 
adapt that framework to their own context. 

Packages are discussed in Chapter 12; stereotypes are discussed in Chapter 6. 

In the UML, you model a framework as a stereotyped package. Zoom inside that package, and 
you'll see mechanisms that live in any of various views of a system's architecture. For example, 
not only might you find parameterized collaborations, you might also find use cases (which 
explain how to use the framework), as well as plain collaborations (which provide sets of 
abstractions that you can build upon• for instance, by subclassing). 

Events are discussed in Chapter 20. 

Figure 28-3 illustrates such a framework, named CyclicExecutive. Among other things, this 
framework includes a collaboration (CommonEvents) encompassing a set of event classes, along 
with a mechanism (EventHandler) for processing these events in a cyclic fashion. A client that 
builds on this framework (such as Pacemaker) could build on the abstractions in CommonEvents 
via subclassing and could also apply an instance of the EventHandler mechanism. 



Figure 28-3 Frameworks 

 
Note 

Frameworks can be distinguished from plain class libraries. A class library contains 
abstractions that your abstractions instantiate or invoke; a framework contains 
abstractions that may instantiate or invoke your abstractions. Both of these kinds of 
connections constitute the framework's slots, tabs, knobs, and dials that you must 
adjust in order to adapt the framework to your context. 

Common Modeling Techniques 

Modeling Design Patterns 

One thing for which you'll use patterns is to model a design pattern. When you model a 
mechanism such as this, you have to take into account its inside, as well as its outside, view. 

When viewed from the outside, a design pattern is rendered as a parameterized collaboration. As 
a collaboration, a pattern provides a set of abstractions whose structure and behavior work 
together to carry out some useful function. The collaboration's parameters name the elements 
that a user of this pattern must bind. This makes the design pattern a template that you use in a 
particular context by supplying elements that match the template parameters. 

When viewed from the inside, a design pattern is simply a collaboration and is rendered with its 
structural and behavioral parts. Typically, you'll model the inside of this collaboration with a set of 
class diagrams (for the structural aspect) and a set of interactions (for the behavioral aspect). The 
collaboration's parameters name certain of these structural elements, which, when the design 
pattern is bound in a particular context, are instantiated using abstractions from that context. 

To model a design pattern, 

Using collaborations to model a mechanism is discussed in Chapter 27. 

• Identify the common solution to the common problem and reify it as a mechanism. 



• Model the mechanism as a collaboration, providing its structural, as well as its behavioral, 
aspects. 

• Identify the elements of the design pattern that must be bound to elements in a specific 
context and render them as parameters to the collaboration. 

For example, Figure 28-4 shows a use of the Command design pattern (as discussed in 
Gamma, et al., Design Patterns, Reading, Massachusetts: Addison-Wesley, 1995). As its 
documentation states, this pattern "encapsulates a request as an object, thereby letting you 
parameterize clients with different requests, queue or log requests, and support undoable 
operations." As the model indicates, this design pattern has four parameters that, when you apply 
the pattern, must be bound to elements in a given context. This model shows such a binding, in 
which Application, PasteCommand, OpenCommand, MenuItem, and Document are bound to 
the design pattern's parameters. 

Figure 28-4 Modeling a Design Pattern 

 
Note that PasteCommand and OpenCommand are bound a little differently than the others. Both 
are subclasses of the Command class, provided by the design pattern itself. If you understand 
how the design pattern works, then by seeing this model, you'll know exactly how these five 
classes work together in context. Very likely, your system will use this pattern a number of times, 
perhaps with different bindings. The ability to reuse a design pattern like this as a first-class 
modeling element is what makes developing with patterns so powerful. 

Note 

Although not shown here, the classifiers that concretely manifest this design pattern 
(Application, PasteCommand, OpenCommand, MenuItem, and Document) are 
structured to be isomorphic with the generic design pattern itself, as shown in Figure 
28-5. Therefore, where there is an association from Client to Receiver in the 
generic design pattern, for example, there also exists an association from 
Application to Document. Applying a pattern applies both the things and the 
relationships of the pattern. 

Figure 28-5 Modeling the Structural Aspect of a Design Pattern 



 

 

Collaborations are discussed in Chapter 27; class diagrams are discussed in Chapter 8; 
interaction diagrams are discussed in Chapter 18. 

To complete your model of a design pattern, you must specify its structural, as well as its 
behavioral, parts, which represent the inside of the collaboration. 

For example, Figure 28-5 shows a class diagram that represents the structure of this design 
pattern. Notice how this diagram uses classes that are named as parameters to the pattern. 

Figure 28-6 shows a sequence diagram that represents the behavior of this design pattern. 

Figure 28-6 Modeling the Behavioral Aspect of a Design Pattern 

 
Modeling Architectural Patterns 

The other thing for which you'll use patterns is to model architectural patterns. When you model 
such a framework, you are, in effect, modeling the infrastructure of an entire architecture that you 
plan to reuse and adapt to some context. 

Packages are discussed in Chapter 12. 

A framework is rendered as a stereotyped package. As a package, a framework provides a set of 
elements, including• but certainly not limited to• classes, interfaces, use cases, components, 



nodes, collaborations, and even other frameworks. In fact, you'll place in a framework all the 
abstractions that work together to provide an extensible template for applications within a domain. 
Some of these elements will be public and represent resources that clients can build on. These 
are the "tabs" of the framework that you can connect to the abstractions in your context. Some of 
these public elements will be design patterns and represent resources to which clients bind. 
These are the "slots" of the framework that you fill in when you bind to the design pattern. Finally, 
some of these elements will be protected or private and represent encapsulated elements of the 
framework that are hidden from the outside view. 

Software architecture is discussed in Chapter 2. 

When you model an architectural pattern, remember that a framework is, in fact, a description of 
an architecture, albeit one that is incomplete and possibly parameterized. As such, everything 
you know about modeling a well-structured architecture applies to modeling well-structured 
frameworks. The best frameworks are not designed in isolation; to do so is an guaranteed way to 
fail. Rather, the best frameworks are harvested from existing architectures that are proven to 
work, and the frameworks evolve to find the slots, tabs, knobs, and dials that are necessary and 
sufficient to make that framework adaptable to other domains. 

To model an architectural pattern, 

• Harvest the framework from an existing, proven architecture. 

• Model the framework as a stereotyped package, containing all the elements (and 
especially the design patterns) that are necessary and sufficient to describe the various 
views of that framework. 

• Expose the slots, tabs, knobs, and dials necessary to adapt the framework in the form of 
design patterns and collaborations. For the most part, this means making it clear to the 
user of the pattern which classes must be extended, which operations must be 
implemented, and which signals must be handled. 

For example, Figure 28-7 shows a specification of the Blackboard architectural pattern (as 
discussed in Buschmann, et al., Pattern-Oriented Software Architecture, New York, New York: 
Wiley, 1996). As its documentation states, this pattern "tackles problems that do not have a 
feasible deterministic solution for the transformation of raw data into high-level data structures." 
The heart of this architecture is the Blackboard design pattern, which dictates how 
KnowledgeSources, a Blackboard, and a Controller collaborate. This framework also 
includes the design pattern Reasoning engine, which specifies a general mechanism for how 
each KnowledgeSource is driven. Finally, as the figure shows, this framework exposes one use 
case, Apply new knowledge sources, which explains to a client how to adapt the framework 
itself. 

Figure 28-7 Modeling an Architectural Pattern 



 
Note 

In practice, modeling a framework completely is no less a task than modeling a 
system's architecture completely. In some ways, the task is even harder because to 
make the framework approachable, you must also expose the slots, tabs, knobs, and 
dials of the framework, and perhaps even provide meta-use cases (such as Apply 
new knowledge sources) that explain how to adapt the framework, as well as plain 
use cases that explain how the framework behaves. 

Hints and Tips 
When you model patterns in the UML, remember that they work at many levels of abstraction, 
from individual classes to the shape of the system as a whole. The most interesting kinds of 
patterns are mechanisms and frameworks. A well-structured pattern 

• Solves a common problem in a common way. 

• Consists of both structural and behavioral aspects. 

• Exposes the slots, tabs, knobs, and dials by which you adapt those aspects to apply 
them to some context. 

• Is atomic, meaning that it is not easily broken into smaller patterns. 

• Tends to cut across individual abstractions in the system. 

When you draw a pattern in the UML, 

• Expose the elements of the pattern that you must adapt to apply it in context. 

• Make the pattern approachable by supplying use cases for using, as well as adapting, the 
pattern. 



Chapter 29. Component Diagrams 
In this chapter 

• Modeling source code 

• Modeling executable releases 

• Modeling physical databases 

• Modeling adaptable systems 

• Forward and reverse engineering 

Deployment diagrams, the second kind of diagram used in modeling he physical aspects of an 
object- oriented system, are discussed in Chapter 30. 

Component diagrams are one of the two kinds of diagrams found in modeling the physical 
aspects of object-oriented systems. A component diagram shows the organization and 
dependencies among a set of components. 

You use component diagrams to model the static implementation view of a system. This involves 
modeling the physical things that reside on a node, such as executables, libraries, tables, files, 
and documents. Component diagrams are essentially class diagrams that focus on a system's 
components. 

Component diagrams are not only important for visualizing, specifying, and documenting 
component-based systems, but also for constructing executable systems through forward and 
reverse engineering. 

Getting Started 
When you build a house, you must do more than create blueprints. Mind you, blueprints are 
important because they help you visualize, specify, and document the kind of house you want to 
build so that you'll build the right house at the right time at the right price. Eventually, however, 
you've got to turn your floor plans and elevation drawings into real walls, floors, and ceilings 
made of wood, stone, or metal. Not only will you build your house out of these raw materials, 
you'll also incorporate pre-built components, such as cabinets, windows, doors, and vents. If you 
are renovating a house, you'll reuse even larger components, such as whole rooms and 
frameworks. 

It's the same with software. You create use case diagrams to reason about the desired behavior 
of your system. You specify the vocabulary of your domain with class diagrams. You create 
sequence diagrams, collaboration diagrams, statechart diagrams, and activity diagrams to specify 
the way the things in your vocabulary work together to carry out this behavior. Eventually, you will 
turn these logical blueprints into things that live in the world of bits, such as executables, libraries, 
tables, files, and documents. You'll find that you must build some of these components from 
scratch, but you'll also end up reusing older components in new ways. 

With the UML, you use component diagrams to visualize the static aspect of these physical 
components and their relationships and to specify their details for construction, as in Figure 29-
1. 

Figure 29-1 A Component Diagram 



 

Terms and Concepts 
A component diagram shows a set of components and their relationships. Graphically, a 
component diagram is a collection of vertices and arcs. 

Common Properties 

The general properties of diagrams are discussed in Chapter 7. 

A component diagram is just a special kind of diagram and shares the same common properties 
as do all other diagrams• a name and graphical contents that are a projection into a model. What 
distinguishes a component diagram from all other kinds of diagrams is its particular content. 

Contents 

Components are discussed in Chapter 25; interfaces are discussed in Chapter 11; 
relationships are discussed in Chapters 5 and 10; packages are discussed in Chapter 12; 
subsystems are discussed in Chapter 31; instances are discussed in Chapter 13; class 
diagrams are discussed in Chapter 8. 

Component diagrams commonly contain 

• Components 

• Interfaces 

• Dependency, generalization, association, and realization relationships 

Like all other diagrams, component diagrams may contain notes and constraints. 

Component diagrams may also contain packages or subsystems, both of which are used to group 
elements of your model into larger chunks. Sometimes, you'll want to place instances in your 
component diagrams, as well, especially when you want to visualize one instance of a family of 
component-based systems. 



Note 

In many ways, a component diagram is just a special kind of class diagram that 
focuses on a system's components. 

 

Common Uses 

Implementation views, in the context of software architecture, are discussed in Chapter 2. 

You use component diagrams to model the static implementation view of a system. This view 
primarily supports the configuration management of a system's parts, made up of components 
that can be assembled in various ways to produce a running system. 

When you model the static implementation view of a system, you'll typically use component 
diagrams in one of four ways. 

1. To model source code 

With most contemporary object-oriented programming languages, you'll cut code using integrated 
development environments that store your source code in files. You can use component 
diagrams to model the configuration management of these files, which represent work-product 
components. 

2. To model executable releases 

A release is a relatively complete and consistent set of artifacts delivered to an internal or 
external user. In the context of components, a release focuses on the parts necessary to deliver a 
running system. When you model a release using component diagrams, you are visualizing, 
specifying, and documenting the decisions about the physical parts that constitute your 
software• that is, its deployment components. 

Persistence is discussed in Chapter 23; modeling logical database schemas is discussed in 
Chapter 8. 

3. To model physical databases 

Think of a physical database as the concrete realization of a schema, living in the world of bits. 
Schemas, in effect, offer an API to persistent information; the model of a physical database 
represents the storage of that information in the tables of a relational database or the pages of an 
object-oriented database. You use component diagrams to represent these and other kinds of 
physical databases. 

4. To model adaptable systems 

Some systems are quite static; their components enter the scene, participate in an execution, and 
then depart. Other systems are more dynamic, involving mobile agents or components that 
migrate for purposes of load balancing and failure recovery. You use component diagrams in 
conjunction with some of the UML's diagrams for modeling behavior to represent these kinds of 
systems. 

Common Modeling Techniques 

Modeling Source Code 



If you develop software in Java, you'll usually save your source code in .java files. If you 
develop software using C++, you'll typically store your source code in header files (.h files) and 
bodies (.cpp files). If you use IDL to develop COM+ or CORBA applications, one interface from 
your design view will often expand into four source code files: the interface itself, the client proxy, 
the server stub, and a bridge class. As your application grows, no matter which language you 
use, you'll find yourself organizing these files into larger groups. Furthermore, during the 
construction phase of development, you'll probably end up creating new versions of some of 
these files for each new incremental release you produce, and you'll want to place these versions 
under the control of a configuration management system. 

The file stereotype for components is discussed in Chapter 25. 

Much of the time, you will not need to model this aspect of a system directly. Instead, you'll let 
your development environment keep track of these files and their relationships. Sometimes, 
however, it's helpful to visualize these source code files and their relationships using component 
diagrams. Component diagrams used in this way typically contain only work-product components 
stereotyped as files, together with dependency relationships. For example, you might reverse 
engineer a set of source code files to visualize their web of compilation dependencies. You can 
go in the other direction by specifying the relationships among your source code files and then 
using those models as input to compilation tools, such as make on Unix. Similarly, you might want 
to use component diagrams to visualize the history of a set of source code files that are under 
configuration management. By extracting information from your configuration management 
system, such as the number of times a source code file has been checked out over a period of 
time, you can use that information to color component diagrams, showing "hot spots" of change 
among your source code files and areas of architectural churn. 

To model a system's source code, 

• Either by forward or reverse engineering, identify the set of source code files of interest 
and model them as components stereotyped as files. 

• For larger systems, use packages to show groups of source code files. 

• Consider exposing a tagged value indicating such information as the version number of 
the source code file, its author, and the date it was last changed. Use tools to manage 
the value of this tag. 

• Model the compilation dependencies among these files using dependencies. Again, use 
tools to help generate and manage these dependencies. 

The trace dependency stereotype is discussed in Chapter 10. 

For example, Figure 29-2 shows five source code files. signal.h is a header file. Three of its 
versions are shown, tracing from new versions back to their older ancestors. Each variant of this 
source code file is rendered with a tagged value exposing its version number. 

Figure 29-2 Modeling Source Code 



 
This header file (signal.h) is used by two other files (interp.cpp and .signal.cpp), both of 
which are bodies. One of these files (interp.cpp) has a compilation dependency to another 
header (irq.h); in turn, device.cpp has a compilation dependency to interp.cpp. Given 
this component diagram, it's easy to trace the impact of changes. For example, changing the 
source code file signal.h will require the recompilation of three other files: signal.cpp, 
interp.cpp, and transitively, device.cpp. As this diagram also shows, the file irq.h is not 
affected. 

Diagrams such as this can easily be generated by reverse engineering from the information held 
by your development environment's configuration management tools. 

Modeling an Executable Release 

Releasing a simple application is easy: You throw the bits of a single executable file on a disk, 
and your users just run that executable. For these kinds of applications, you don't need 
component diagrams because there's nothing difficult to visualize, specify, construct, or 
document. 

Releasing anything other than a simple application is not so easy. You need the main executable 
(usually, a .exe file), but you also need all its ancillary parts, such as libraries (commonly .dll 
files if you are working in the context of COM+, or .class and .jar files if you are working in 
the context of Java), databases, help files, and resource files. For distributed systems, you'll likely 
have multiple executables and other parts scattered across various nodes. If you are working with 
a system of applications, you'll find that some of these components are unique to each 
application but that many are shared among applications. As you evolve your system, controlling 
the configuration of these many components becomes an important activity• and a more difficult 
one because changes in the components associated with one application may affect the 
operation of other applications. 



For this reason, you use component diagrams to visualize, specify, construct, and document the 
configuration of your executable releases, encompassing the deployment components that form 
each release and the relationships among those components. You can use component diagrams 
to forward engineer a new system and to reverse engineer an existing one. 

When you create component diagrams such as these, you actually just model a part of the things 
and relationships that make up your system's implementation view. For this reason, each 
component diagram should focus on one set of components at a time. 

To model an executable release, 

The UML's extensibility mechanisms are discussed in Chapter 6; interfaces are discussed in 
Chapter 11. 

• Identify the set of components you'd like to model. Typically, this will involve some or all 
the components that live on one node, or the distribution of these sets of components 
across all the nodes in the system. 

• Consider the stereotype of each component in this set. For most systems, you'll find a 
small number of different kinds of components (such as executables, libraries, tables, 
files, and documents). You can use the UML's extensibility mechanisms to provide visual 
cues for these stereotypes. 

• For each component in this set, consider its relationship to its neighbors. Most often, this 
will involve interfaces that are exported (realized) by certain components and then 
imported (used) by others. If you want to expose the seams in your system, model these 
interfaces explicitly. If you want your model at a higher level of abstraction, elide these 
relationships by showing only dependencies among the components. 

For example, Figure 29-3 models part of the executable release for an autonomous robot. This 
figure focuses on the deployment components associated with the robot's driving and calculation 
functions. You'll find one component (driver.dll) that exports an interface (IDrive) that is, in 
turn, imported by another component (path.dll). driver.dll exports one other interface 
(ISelfTest) that is probably used by other components in the system, although they are not 
shown here. There's one other component shown in this diagram (collision.dll), and it, too, 
exports a set of interfaces, although these details are elided: path.dll is shown with a 
dependency directly to collision.dll. 

Figure 29-3 Modeling an Executable Release 



 
There are many more components involved in this system. However, this diagram only focuses 
on those deployment components that are directly involved in moving the robot. Note that in this 
component-based architecture, you could replace a specific version of driver.dll with another 
that realized the same (and perhaps additional) interfaces, and path.dll would still function 
properly. If you want to be explicit about the operations that driver.dll realizes, you could 
always render its interface using class notation, stereotyped as »interfaceᑺ. 

Modeling a Physical Database 

Modeling a logical database schema is discussed in Chapter 8. 

A logical database schema captures the vocabulary of a system's persistent data, along with the 
semantics of their relationships. Physically, these things are stored in a database for later 
retrieval, either a relational database, an object-oriented one, or a hybrid object/relational 
database. The UML is well suited to modeling physical databases, as well as logical database 
schemas. 

Physical database design is beyond the scope of this book; the focus here is simply to show you 
how you can model databases and tables using the UML. 

Mapping a logical database schema to an object-oriented database is straightforward because 
even complex inheritance lattices can be made persistent directly. Mapping a logical database 



schema to a relational database is not so simple, however. In the presence of inheritance, you 
have to make decisions about how to map classes to tables. Typically, you can apply one or a 
combination of three strategies. 

1. Define a separate table for each class. This is a simple but naive approach because it 
introduces maintenance headaches when you add new child classes or modify your 
parent classes. 

2. Collapse your inheritance lattices so that all instances of any class in a hierarchy has the 
same state. The downside with this approach is that you end up storing superfluous 
information for many instances. 

3. Separate parent and child states into different tables. This approach best mirrors your 
inheritance lattice, but the downside is that traversing your data will require many cross-
table joins. 

When designing a physical database, you also have to make decisions about how to map 
operations defined in your logical database schema. Object- oriented databases make the 
mapping fairly transparent. But, with relational databases, you have to make some decisions 
about how these logical operations are implemented. Again, you have some choices. 

1. For simple CRUD (create, read, update, delete) operations, implement them with 
standard SQL or ODBC calls. 

2. For more-complex behavior (such as business rules), map them to triggers or stored 
procedures. 

Given these general guidelines, to model a physical database, 

• Identify the classes in your model that represent your logical database schema. 

• Select a strategy for mapping these classes to tables. You will also want to consider the 
physical distribution of your databases. Your mapping strategy will be affected by the 
location in which you want your data to live on your deployed system. 

• To visualize, specify, construct, and document your mapping, create a component 
diagram that contains components stereotyped as tables. 

• Where possible, use tools to help you transform your logical design into a physical 
design. 

The UML's standard elements are summarized in Appendix B. 

Figure 29-4 shows a set of database tables drawn from an information system for a school. You 
will find one database (school.db, rendered as a component stereotyped as database) that's 
composed of five tables: student, class, instructor, department, and course (rendered 
as a component stereotyped as table, one of the UML's standard elements). In the 
corresponding logical database schema, there was no inheritance, so mapping to this physical 
database design is straightforward. 

Figure 29-4 Modeling a Physical Database 



 
Although not shown in this example, you can specify the contents of each table. Components can 
have attributes, so a common idiom when modeling physical databases is to use these attributes 
to specify the columns of each table. Similarly, components can have operations, and these can 
be used to denote stored procedures. 

Modeling Adaptable Systems 

All the component diagrams shown thus far have been used to model static views. Their 
components spend their entire lives on one node. This is the most common situation you'll 
encounter, but especially in the domain of complex, distributed systems, you'll need to model 
dynamic views. For example, you might have a system that replicates its databases across 
several nodes, switching the one that is the primary database when a server goes down. 
Similarly, if you are modeling a globally distributed 24x7 operation (that is, a system that's up 24 
hours a day, 7 days a week), you will likely encounter mobile agents, components that migrate 
from node to node to carry out some transaction. To model these dynamic views, you'll need to 
use a combination of component diagrams, object diagrams, and interaction diagrams. 

To model an adaptable system, 

The location tagged value is discussed in Chapter 23; object diagrams are discussed in 
Chapter 15. 

• Consider the physical distribution of the components that may migrate from node to node. 
You can specify the location of a component instance by marking it with a location tagged 
value, which you can then render in a component diagram (although, technically 
speaking, a diagram that contains only instances is an object diagram). 

• If you want to model the actions that cause a component to migrate, create a 
corresponding interaction diagram that contains component instances. You can illustrate 
a change of location by drawing the same instance more than once, but with different 
values for its location tagged value. 

For example, Figure 29-5 models the replication of the database from the previous figure. We 
show two instances of the component school.db. Both instances are anonymous, and both 
have a different value for their location tagged value. There's also a note, which explicitly 
specifies which instance replicates the other. 

Figure 29-5 Modeling Adaptable Systems 



 
If you want to show the details of each database, you can render them in their canonical form• a 
component stereotyped as a database. 

Interaction diagrams are discussed in Chapter 18. 

Although not shown here, you could use an interaction diagram to model the dynamics of 
switching from one primary database to another. 

Forward and Reverse Engineering 

Forward engineering and reverse engineering components are pretty direct, because 
components are themselves physical things (executables, libraries, tables, files, and documents) 
that are therefore close to the running system. When you forward engineer a class or a 
collaboration, you really forward engineer to a component that represents the source code, binary 
library, or executable for that class or collaboration. Similarly, when you reverse engineer source 
code, binary libraries, or executables, you really reverse engineer to a component or set of 
components that, in turn, trace to classes or collaborations. 

Choosing to forward engineer (the creation of code from a model) a class or collaboration to 
source code, a binary library, or an executable is a mapping decision you have to make. You'll 
want to take your logical models to source code if you are interested in controlling the 
configuration management of files that are then manipulated by a development environment. 
You'll want to take your logical models directly to binary libraries or executables if you are 
interested in managing the components that you'll actually deploy on a running system. In some 
cases, you'll want to do both. A class or collaboration may be denoted by source code, as well as 
by a binary library or executable. 

To forward engineer a component diagram, 

• For each component, identify the classes or collaborations that the component 
implements. 

• Choose the target for each component. Your choice is basically between source code (a 
form that can be manipulated by development tools) or a binary library or executable (a 
form that can be dropped into a running system). 



• Use tools to forward engineer your models. 

Reverse engineering class diagrams is discussed in Chapter 8. 

Reverse engineering (the creation of a model from code) a component diagram is not a perfect 
process because there is always a loss of information. From source code, you can reverse 
engineer back to classes; this is the most common thing you'll do. Reverse engineering source 
code to components will uncover compilation dependencies among those files. For binary 
libraries, the best you can hope for is to denote the library as a component and then discover its 
interfaces by reverse engineering. This is the second most common thing you'll do with 
component diagrams. In fact, this is a useful way to approach a set of new libraries that may be 
otherwise poorly documented. For executables, the best you can hope for is to denote the 
executable as a component and then disassemble its code• something you'll rarely need to do 
unless you work in assembly language. 

To reverse engineer a component diagram, 

• Choose the target you want to reverse engineer. Source code can be reverse engineered 
to components and then classes. Binary libraries can be reverse engineered to uncover 
their interfaces. Executables can be reverse engineered the least. 

• Using a tool, point to the code you'd like to reverse engineer. Use your tool to generate a 
new model or to modify an existing one that was previously forward engineered. 

• Using your tool, create a component diagram by querying the model. For example, you 
might start with one or more components, then expand the diagram by following 
relationships or neighboring components. Expose or hide the details of the contents of 
this component diagram as necessary to communicate your intent. 

For example, Figure 29-6 provides a component diagram that represents the reverse 
engineering of the ActiveX component vbrun.dll. As the figure shows, the component realizes 
11 interfaces. Given this diagram, you can begin to understand the semantics of the component 
by next exploring the details of its interfaces. 

Figure 29-6 Reverse Engineering 



 
Especially when you reverse engineer from source code, and sometimes when you reverse 
engineer from binary libraries and executables, you'll do so in the context of a configuration 
management system. This means that you'll often be working with specific versions of files or 
libraries, with all versions of a configuration compatible with one another. In these cases, you'll 
want to include a tagged value that represents the component version, which you can derive from 
your configuration management system. In this manner, you can use the UML to visualize the 
history of a component across various releases. 

Hints and Tips 
When you create component diagrams in the UML, remember that every component diagram is 
just a graphical presentation of the static implementation view of a system. This means that no 
single component diagram need capture everything about a system's implementation view. 
Collectively, all the component diagrams of a system represent the system's complete static 
implementation view; individually, each represents just one aspect. 

A well-structured component diagram 

• Is focused on communicating one aspect of a system's static implementation view. 

• Contains only those elements that are essential to understanding that aspect. 

• Provides detail consistent with its level of abstraction, with only those adornments that 
are essential to understanding exposed. 

• Is not so minimalist that it misinforms the reader about important semantics. 

When you draw a component diagram, 

• Give it a name that communicates its purpose. 



• Lay out its elements to minimize lines that cross. 

• Organize its elements spatially so that things that are semantically close are laid out 
physically close. 

• Use notes and color as visual cues to draw attention to important features of your 
diagram. 

• Use stereotyped elements carefully. Choose a small set of common icons for your project 
or organization and use them consistently. 

Chapter 30. Deployment Diagrams 
In this chapter 

• Modeling an embedded system 

• Modeling a client/server system 

• Modeling a fully distributed system 

• Forward and reverse engineering 

Component diagrams, the second kind of diagram used in modeling the physical aspects of an 
object- oriented system, are discussed in Chapter 29. 

Deployment diagrams are one of the two kinds of diagrams used in modeling the physical 
aspects of an object-oriented system. A deployment diagram shows the configuration of run time 
processing nodes and the components that live on them. 

You use deployment diagrams to model the static deployment view of a system. For the most 
part, this involves modeling the topology of the hardware on which your system executes. 
Deployment diagrams are essentially class diagrams that focus on a system's nodes. 

Deployment diagrams are not only important for visualizing, specifying, and documenting 
embedded, client/server, and distributed systems, but also for managing executable systems 
through forward and reverse engineering. 

Getting Started 
When you create a software-intensive system, your main focus as a software developer is on 
architecting and deploying its software. However, as a systems engineer, your main focus is on 
the system's hardware and software and in managing the trade-offs between the two. Whereas 
software developers work with somewhat intangible artifacts, such as models and code, system 
developers work with quite tangible hardware, as well. 

The UML is primarily focused on facilities for visualizing, specifying, constructing, and 
documenting software artifacts, but it's also designed to address hardware artifacts. This is not to 
say that the UML is a general-purpose hardware description language like VHDL. Rather, the 
UML is designed to model many of the hardware aspects of a system sufficient for a software 
engineer to specify the platform on which the system's software executes and for a systems 
engineer to manage the system's hardware/software boundary. In the UML, you use class 
diagrams and component diagrams to reason about the structure of your software. You use 
sequence diagrams, collaboration diagrams, statechart diagrams, and activity diagrams to specify 
the behavior of your software. At the edge of the your system's software and hardware, you use 



deployment diagrams to reason about the topology of processors and devices on which your 
software executes. 

With the UML, you use deployment diagrams to visualize the static aspect of these physical 
nodes and their relationships and to specify their details for construction, as in Figure 30-1. 

Figure 30-1 A Deployment Diagram 

 

Terms and Concepts 
A deployment diagram is a diagram that shows the configuration of run time processing nodes 
and the components that live on them. Graphically, a deployment diagram is a collection of 
vertices and arcs. 

Common Properties 

The general properties of diagrams are discussed in Chapter 7. 

A deployment diagram is just a special kind of diagram and shares the same common properties 
as all other diagrams• a name and graphical contents that are a projection into a model. What 
distinguishes a deployment diagram from all other kinds of diagrams is its particular content. 

Contents 

Nodes are discussed in Chapter 26; relationships are discussed in Chapters 5 and 10; 
components are discussed in Chapter 25; packages are discussed in Chapter 12; subsystems 
are discussed in Chapter 31; instances are discussed in Chapter 13; class diagrams are 
discussed in Chapter 8 

Deployment diagrams commonly contain 



• Nodes 

• Dependency and association relationships 

Like all other diagrams, deployment diagrams may contain notes and constraints. 

Deployment diagrams may also contain components, each of which must live on some node. 
Deployment diagrams may also contain packages or subsystems, both of which are used to 
group elements of your model into larger chunks. Sometimes, you'll want to place instances in 
your deployment diagrams, as well, especially when you want to visualize one instance of a 
family of hardware topologies. 

Note 

In many ways, a deployment diagram is just a special kind of class diagram, which 
focuses on a system's nodes. 

 

Common Uses 

Deployment views in the context of software architecture are discussed in Chapter 2. 

You use deployment diagrams to model the static deployment view of a system. This view 
primarily addresses the distribution, delivery, and installation of the parts that make up the 
physical system. 

There are some kinds of systems for which deployment diagrams are unnecessary. If you are 
developing a piece of software that lives on one machine and interfaces only with standard 
devices on that machine that are already managed by the host operating system (for example, a 
personal computer's keyboard, display, and modem), you can ignore deployment diagrams. On 
the other hand, if you are developing a piece of software that interacts with devices that the host 
operating system does not typically manage or that is physically distributed across multiple 
processors, then using deployment diagrams will help you reason about your system's software-
to-hardware mapping. 

When you model the static deployment view of a system, you'll typically use deployment 
diagrams in one of three ways. 

1. To model embedded systems 

An embedded system is a software-intensive collection of hardware that interfaces with the 
physical world. Embedded systems involve software that controls devices such as motors, 
actuators, and displays and that, in turn, is controlled by external stimuli such as sensor input, 
movement, and temperature changes. You can use deployment diagrams to model the devices 
and processors that comprise an embedded system. 

2. To model client/server systems 

Modeling the distribution of components is discussed in Chapter 26. 

A client/server system is a common architecture focused on making a clear separation of 
concerns between the system's user interface (which lives on the client) and the system's 
persistent data (which lives on the server). Client/ server systems are one end of the continuum 
of distributed systems and require you to make decisions about the network connectivity of clients 



to servers and about the physical distribution of your system's software components across the 
nodes. You can model the topology of such systems by using deployment diagrams. 

3. To model fully distributed systems 

At the other end of the continuum of distributed systems are those that are widely, if not globally, 
distributed, typically encompassing multiple levels of servers. Such systems are often hosts to 
multiple versions of software components, some of which may even migrate from node to node. 
Crafting such systems requires you to make decisions that enable the continuous change in the 
system's topology. You can use deployment diagrams to visualize the system's current topology 
and distribution of components to reason about the impact of changes on that topology. 

Common Modeling Techniques 
Modeling an Embedded System 

Nodes and devices are discussed in Chapter 26. 

Developing an embedded system is far more than a software problem. You have to manage the 
physical world in which there are moving parts that break and in which signals are noisy and 
behavior is nonlinear. When you model such a system, you have to take into account its interface 
with the real world, and that means reasoning about unusual devices, as well as nodes. 

The UML's extensibility mechanisms are discussed in Chapter 6. 

Deployment diagrams are useful in facilitating the communication between your project's 
hardware engineers and software developers. By using nodes that are stereotyped to look like 
familiar devices, you can create diagrams that are understandable by both groups. Deployment 
diagrams are also helpful in reasoning about hardware/software trade-offs. You'll use deployment 
diagrams to visualize, specify, construct, and document your system engineering decisions. 

To model an embedded system, 

• Identify the devices and nodes that are unique to your system. 

• Provide visual cues, especially for unusual devices, by using the UML's extensibility 
mechanisms to define system-specific stereotypes with appropriate icons. At the very 
least, you'll want to distinguish processors (which contain software components) and 
devices (which, at that level of abstraction, don't directly contain software). 

• Model the relationships among these processors and devices in a deployment diagram. 
Similarly, specify the relationship between the components in your system's 
implementation view and the nodes in your system's deployment view. 

• As necessary, expand on any intelligent devices by modeling their structure with a more 
detailed deployment diagram. 

For example, Figure 30-2 shows the hardware for a simple autonomous robot. You'll find one 
node (Pentium motherboard) stereotyped as a processor. 

Figure 30-2 Modeling an Embedded System 



 
Surrounding this node are eight devices, each stereotyped as a device and rendered with an icon 
that offers a clear visual cue to its real-world equivalent. 

Modeling a Client/Server System 

The moment you start developing a system whose software no longer resides on a single 
processor, you are faced with a host of decisions: How do you best distribute your software 
components across these nodes? How do they communicate? How do you deal with failure and 
noise? At one end of the spectrum of distributed systems, you'll encounter client/server systems, 
in which there's a clear separation of concerns between the system's user interface (typically 
managed by the client) and its data (typically managed by the server). 

There are many variations on this theme. For example, you might choose to have a thin client, 
meaning that it has a limited amount of computational capacity and does little more than manage 
the user interface and visualization of information. Thin clients may not even host a lot of 
components but, rather, may be designed to load components from the server, as needed, as 
with Enterprise Java Beans. On the other hand, you might chose to have a thick client, meaning 
that it has a goodly amount of computational capacity and does more than just visualization. A 
thick client typically carries out some of the system's logic and business rules. The choice 
between thin and thick clients is an architectural decision that's influenced by a number of 
technical, economic, and political factors. 

Either way, partitioning a system into its client and server parts involves making some hard 
decisions about where to physically place its software components and how to impose a 
balanced distribution of responsibilities among those components. For example, most 
management information systems are essentially three-tier architectures, which means that the 
system's GUI, business logic, and database are physically distributed. Deciding where to place 



the system's GUI and database are usually fairly obvious, so the hard part lies in deciding where 
the business logic lives. 

You can use the UML's deployment diagrams to visualize, specify, and document your decisions 
about the topology of your client/server system and how its software components are distributed 
across the client and server. Typically, you'll want to create one deployment diagram for the 
system as a whole, along with other, more detailed, diagrams that drill down to individual 
segments of the system. 

To model a client/server system, 

• Identify the nodes that represent your system's client and server processors. 

• Highlight those devices that are germane to the behavior of your system. For example, 
you'll want to model special devices, such as credit card readers, badge readers, and 
display devices other than monitors, because their placement in the system's hardware 
topology are likely to be architecturally significant. 

• Provide visual cues for these processors and devices via stereotyping. 

• Model the topology of these nodes in a deployment diagram. Similarly, specify the 
relationship between the components in your system's implementation view and the 
nodes in your system's deployment view. 

Packages are discussed in Chapter 12; multiplicity is discussed in Chapter 10. 

For example, Figure 30-3 shows the topology of a human resources system, which follows a 
classical client/server architecture. This figure illustrates the client/server split explicitly by using 
the packages named client and server. The client package contains two nodes (console 
and kiosk), both of which are stereotyped and are visually distinguishable. The server package 
contains two kinds of nodes (caching server and server), and both of these have been 
adorned with some of the components that reside on each. Note also that caching server and 
server are marked with explicit multiplicities, specifying how many instances of each are 
expected in a particular deployed configuration. For example, this diagram indicates that there 
may be two or more caching servers in any deployed instance of the system. 

Figure 30-3 Modeling a Client/Server System 

 
Modeling a Fully Distributed System 

Distributed systems come in many forms, from simple two-processor systems to those that span 
many geographically dispersed nodes. The latter are typically never static. Nodes are added and 
removed as network traffic changes and processors fail; new and faster communication paths 
may be established in parallel with older, slower channels that are eventually decommissioned. 



Not only may the topology of these systems change, but the distribution of their software 
components may change, as well. For example, database tables may be replicated across 
servers, only to be moved, as traffic dictates. For some global systems, components may follow 
the sun, migrating from server to server as the business day begins in one part of the world and 
ends in another. 

Visualizing, specifying, and documenting the topology of fully distributed systems such as these 
are valuable activities for the systems administrator, who must keep tabs on an enterprise's 
computing assets. You can use the UML's deployment diagrams to reason about the topology of 
such systems. When you document fully distributed systems using deployment diagrams, you'll 
want to expand on the details of the system's networking devices, each of which you can 
represent as a stereotyped node. 

To model a fully distributed system, 

• Identify the system's devices and processors as for simpler client/server systems. 

• If you need to reason about the performance of the system's network or the impact of 
changes to the network, be sure to model these communication devices to the level of 
detail sufficient to make these assessments. 

• Pay close attention to logical groupings of nodes, which you can specify by using 
packages. 

• Model these devices and processors using deployment diagrams. Where possible, use 
tools that discover the topology of your system by walking your system's network. 

• If you need to focus on the dynamics of your system, introduce use case diagrams to 
specify the kinds of behavior you are interested in, and expand on these use cases with 
interaction diagrams. 

Packages are discussed in Chapter 12. 

Use cases are discussed in Chapter 16; interaction diagrams are described in Chapter 20; 
instances are discussed in Chapter 13. 

Note 

When modeling a fully distributed system, it's common to reify the network itself as an 
node. For example, the Internet might be represented as a node (as in Figure 30-1, 
shown a stereotyped node). You can also reify a local area network (LAN) or wide-
area network (WAN) in the same way (as in Figure 30-1). In each case, you can use 
the node's attributes and operations to capture properties about the network. 

 

Figure 30-4 shows the topology of a fully distributed system. This particular deployment diagram 
is also an object diagram, for it contains only instances. You can see three consoles (anonymous 
instances of the stereotyped node console), which are linked to the Internet (clearly a 
singleton node). In turn, there are three instances of regional servers, which serve as front 
ends of country servers, only one of which is shown. As the note indicates, country servers 
are connected to one another, but their relationships are not shown in this diagram. 

Figure 30-4 Modeling a Fully Distributed System 



 
In this diagram, the Internet has been reified as a stereotyped node. 

Forward and Reverse Engineering 

There's only a modest amount of forward engineering (the creation of code from models) that you 
can do with deployment diagrams. For example, after specifying the physical distribution of 
components across the nodes in a deployment diagram, it is possible to use tools that then push 
these components out to the real world. For system administrators, using the UML in this way 
helps you visualize what can be a very complicated task. 

Reverse engineering (the creation of models from code) from the real world back to deployment 
diagrams is of tremendous value, especially for fully distributed systems that are under constant 
change. You'll want to supply a set of stereotyped nodes that speak the language of your 
system's network administrators, in order to tailor the UML to their domain. The advantage of 
using the UML is that it offers a standard language that addresses not only their needs, but the 
needs of your project's software developers, as well. 

To reverse engineer a deployment diagram, 

• Choose the target that you want to reverse engineer. In some cases, you'll want to sweep 
across your entire network; in others, you can limit your search. 

• Choose also the fidelity of your reverse engineering. In some cases, it's sufficient to 
reverse engineer just to the level of all the system's processors; in others, you'll want to 
reverse engineer the system's networking peripherals, as well. 

• Use a tool that walks across your system, discovering its hardware topology. Record that 
topology in a deployment model. 

• Along the way, you can use similar tools to discover the components that live on each 
node, which you can also record in a deployment model. You'll want to use an intelligent 
search, for even a basic personal computer can contain gigabytes of components, many 
of which may not be relevant to your system. 

• Using your modeling tools, create a deployment diagram by querying the model. For 
example, you might start with visualizing the basic client/server topology, then expand on 
the diagram by populating certain nodes with components of interest that live on them. 
Expose or hide the details of the contents of this deployment diagram as necessary to 
communicate your intent. 



Hints and Tips 
When you create deployment diagrams in the UML, remember that every deployment diagram is 
just a graphical presentation of the static deployment view of a system. This means that no single 
deployment diagram need capture everything about a system's deployment view. Collectively, all 
the deployment diagrams of a system represent the system's complete static deployment view; 
individually, each represents just one aspect. 

A well-structured deployment diagram 

• Focuses on communicating one aspect of a system's static deployment view. 

• Contains only those elements that are essential to understanding that aspect. 

• Provides detail consistent with its level of abstraction; expose only those adornments that 
are essential to understanding. 

• Is not so minimalist that it misinforms the reader about important semantics. 

When you draw a deployment diagram, 

• Give it a name that communicates its purpose. 

• Lay out its elements to minimize lines that cross. 

• Organize its elements spatially so that things that are semantically close are laid out 
physically close. 

• Use notes and color as visual cues to draw attention to important features of your 
diagram. 

• Use stereotyped elements carefully. Choose a small set of common icons for your project 
or organization, and use them consistently. 

Chapter 31. Systems and Models 
In this chapter 

• Systems, subsystems, models, and views 

• Modeling the architecture of a system 

• Modeling systems of systems 

• Organizing the artifacts of development 

The UML is a graphical language for visualizing, specifying, constructing, and documenting the 
artifacts of a software-intensive system. You use the UML to model systems. A model is a 
simplification of reality• an abstraction of a system• created in order to better understand the 
system. A system, possibly decomposed into a collection of subsystems, is a set of elements 
organized to accomplish a purpose and described by a set of models, possibly from different 
viewpoints. Things like classes, interfaces, components, and nodes are important parts of a 
system's model. In the UML, you use models to organize these and all the other abstractions of a 
system. As you move to more-complex domains, you'll find that a system at one level of 
abstraction looks like a subsystem at another, higher, level. In the UML, you can model systems 
and subsystems as a whole so that you can seamlessly move up to problems of scale. 



Well-structured models help you visualize, specify, construct, and document a complex system 
from different, yet interrelated, aspects. Well-structured systems are functionally, logically, and 
physically cohesive, formed of loosely coupled subsystems. 

Getting Started 
Building a dog house doesn't take a lot of thought. The needs of a dog are simple, so to satisfy all 
but the most demanding dog, you can just do it. 

The differences between building a dog house and building a high rise are discussed in Chapter 
1. 

Building a house or a high rise takes a lot more thought. The needs of a family or a building's 
tenants are not so simple, so to satisfy even the least demanding client, you can't just do it. 
Rather, you have to do some modeling. Different stakeholders will look at the problem from 
different angles and with different concerns. That's why, for complex buildings, you'll end up 
creating floor plans, elevation plans, heating/cooling plans, electrical plans, plumbing plans, and 
perhaps even networking plans. There's no one model that can adequately capture all the 
interesting aspects of a complex building. 

Diagrams are discussed in Chapter 7; the five views of a software architecture are discussed in 
Chapter 2. 

In the UML, you organize all the abstractions of a software-intensive system into models, each of 
which represents some relatively independent, yet important, aspect of the system under 
development. You then use diagrams to visualize interesting collections of these abstractions. 
Looking at the five views of an architecture is a particularly useful way to channel the attention of 
a software system's different stakeholders. Collectively, these models work together to provide a 
complete statement of a system's structure and behavior. 

For larger systems, you'll find that the elements of such systems can be meaningfully 
decomposed into separate subsystems, each of which looks just like a smaller system when 
viewed from a lower level of abstraction. 

The UML's extensibility mechanisms are discussed in Chapter 6; packages are discussed in 
Chapter 12. 

The UML provides a graphical representation for systems and subsystems, as Figure 31-1 
shows. This notation permits you to visualize the decomposition of a system into smaller 
subsystems. Graphically, a system and a subsystem are rendered as a stereotyped package 
icon. Models and views don't have a special graphical representation (other than rendering them 
as stereotyped packages) because they are primarily things that are manipulated by tools that 
you use to organize the different aspects of a system. 

Figure 31-1 Systems and Subsystems 



 

Terms and Concepts 
A system, possibly decomposed into a collection of subsystems, is a set of elements organized to 
accomplish a purpose and described by a set of models, possibly from different viewpoints. A 
subsystem is a grouping of elements of which some constitute a specification of the behavior 
offered by other contained elements. Graphically, a system and a subsystem are rendered as a 
stereotyped package icon. A modelis a simplification of reality, an abstraction of a system, 
created in order to better understand the system. A view is a projection of a model, which is seen 
from one perspective or vantage point and omits entities that are not relevant to this perspective. 

Systems and Subsystems 

A system is the thing itself that you are developing and for which you build models. A system 
encompasses all the artifacts that constitute that thing, including all its models and modeling 
elements, such as classes, interfaces, components, nodes, and their relationships. Everything 
you need to visualize, specify, construct, and document a system is part of that system, and 
everything you don't need to visualize, specify, construct, and document a system lies outside 
that system. 

Stereotypes are discussed in Chapter 6; packages are discussed in Chapter 12; classes are 
discussed in Chapters 4and 9; use cases are discussed in Chapter 16; state machines are 
discussed in Chapter 21; collaborations are discussed in Chapter 27. 

In the UML, a system is rendered as a stereotyped package, as shown in the previous figure. As 
a stereotyped package, a system owns elements. If you zoom inside a system, you'll see all its 
models and individual modeling elements (including diagrams), perhaps further decomposed into 
subsystems. As a classifier, a system may have instances (a system may be deployed in multiple 
instances in the real world), attributes and operations (actors outside the system may act on the 
system as a whole), use cases, state machines, and collaborations, all of which may specify the 
behavior of the system. A system may even realize interfaces, which is important when you are 
constructing systems of systems. 

A subsystem is simply a part of a system, and is used to decompose a complex system into 
nearly independent parts. A system at one level of abstraction may be a subsystem of a system 
at a higher level of abstraction. 

In the UML, a subsystem is rendered as a stereotyped package icon, also shown in the previous 
figure. Semantically, a subsystem is both a kind of package, as well as a kind of classifier. 



Aggregation and generalization are discussed in Chapters 5 and 10. 

The primary relationship among systems and subsystems is aggregation. A system (the whole) 
may contain zero or more subsystems (the parts). You can also have generalization relationships 
among systems and subsystems. Using generalization, you can model families of systems and 
subsystems, some of which represent general kinds of systems and others of which represent 
specific tailorings of those systems. 

Note 

A system represents the highest-level thing in a given context; the subsystems that 
make up a system provide a complete and non-overlapping partitioning of the system 
as a whole. 

 

Models and Views 

A model is a simplification of reality, in which reality is defined in the context of the system being 
modeled. In short, a model is an abstraction of a system. A subsystem represents a partitioning of 
the elements of a larger system into independent parts; a model is a partitioning of the 
abstractions that visualize, specify, construct, and document that system. The difference is subtle 
but important. You decompose a system into subsystems so that you can develop and deploy 
these parts somewhat independently; you partition the abstractions of a system or a subsystem 
into models so that you can better understand the thing you are developing and deploying. Just 
as a complex system such as an aircraft may have many parts (for example, the airframe, 
propulsion, avionics, and passenger subsystems), those subsystems and the system as a whole 
may be modeled from a number of different points of view (such as from the perspective of 
structural, dynamic, electrical, and heating/cooling models, for example). 

Packages are discussed in Chapter 12. 

A model is a special kind of package. Because you'll rarely need to model models explicitly, 
there's no special graphical rendering defined for models in the UML. Tools need to manipulate 
models, however, so a tool will typically use package notation to represent a model as seen by 
the tool. 

The five views of a software architecture are discussed in Chapter 2. 

As a package, a model owns elements. The models associated with a system or subsystem 
completely partition the elements of that system or subsystem, meaning that every element is 
owned by exactly one package. Typically, you'll organize the artifacts of a system or subsystem 
into a set of nonoverlapping models, covered by the five views of software architecture that are 
described elsewhere. 

Diagrams are discussed in Chapter 7. 

A model (for example, a process model) may contain so many artifacts (such as active classes, 
relationships, and interactions) that in systems of scale, you simply cannot embrace all those 
artifacts at once. Think of a view as a projection into a model. For each model, you'll have a 
number of diagrams that exist to give you a peek into the things owned by the model. A view 
encompasses a subset of the things owned by a model; a view typically may not cross model 
boundaries. As described in the next section, there are no direct relationships among models, 
although you'll find trace relationships among the elements contained in different models. 

Note 



The UML does not dictate which models you should use to visualize, specify, 
construct, and document a system, although the Rational Unified Process does 
suggest a proven set of models. 

 

Trace 

Relationships are discussed in Chapters 5 and 10. 

Specifying relationships among elements such as classes, interfaces, components, and nodes is 
an important structural part of any model. Specifying the relationships among elements such as 
documents, diagrams, and packages that live in different models is an important part of managing 
the development artifacts of complex systems, many of which may exist in multiple versions. 

Dependencies are discussed in Chapter 5; stereotypes are discussed in Chapter 6. 

In the UML, you can model the conceptual relationship among elements that live in different 
models by using a trace relationship; a trace may not be applied among elements in the same 
model. A trace is represented as a stereotyped dependency. You can often ignore the direction of 
this dependency, although you'll typically direct it to the older or more-specific element, as in 
Figure 31-2. The two most common uses for the trace relationship are to trace from 
requirements to implementation (and all the artifacts in between) and to trace from version to 
version. 

Figure 31-2 Trace Relationships 

 
Note 

Most of the time, you will not want to render trace relationships explicitly but, rather, 
will treat them as hyperlinks. 

Common Modeling Techniques 

Modeling the Architecture of a System 

Architecture and modeling are discussed in Chapter 1. 

The most common use for which you'll apply systems and models is to organize the elements you 
use to visualize, specify, construct, and document a system's architecture. Ultimately, this 
touches virtually all the artifacts you'll find in a software development project. When you model a 
system's architecture, you capture decisions about the system's requirements, its logical 
elements, and its physical elements. You'll also model both structural and behavioral aspects of 



the systems and the patterns that shape these views. Finally, you'll want to focus on the seams 
between subsystems and the tracing from requirements to deployment. 

To model the architecture of a system, 

The five views of a software architecture are discussed in Chapter 2; diagrams are discussed in 
Chapter 7. 

• Identify the views that you'll use to represent your architecture. Most often, you'll want to 
include a use case view, a design view, a process view, a implementation view, and a 
deployment view, as shown in Figure 31-3. 

Figure 31-3 Modeling a System's Architecture 

 
• Specify the context for this system, including the actors that surround it. 

• As necessary, decompose the system into its elementary subsystems. 

The following activities apply to the system, as well as to its subsystems. 

• Specify a use case view of the system, encompassing the use cases that describe the 
behavior of the system as seen by its end users, analysts, and testers. Apply use case 
diagrams to model static aspects, and interaction diagrams, statechart diagrams, and 
activity diagrams to model the dynamic aspects. 

• Specify a design view of the system, encompassing the classes, interfaces, and 
collaborations that form the vocabulary of the problem and its solution. Apply class 
diagrams and object diagrams to model static aspects, and iteration diagrams, statechart 
diagrams, and activity diagrams to model the dynamic aspects. 

• Specify a process view of the system, encompassing the threads and processes that 
form the system's concurrency and synchronization mechanisms. Apply the same 
diagrams as for the design view, but with a focus on active classes and objects that 
represent threads and processes. 

• Specify an implementation view of the system, encompassing the components that are 
used to assemble and release the physical system. Apply component diagrams to model 
static aspects, and interaction diagrams, statechart diagrams, and activity diagrams to 
model the dynamic aspects. 

• Specify a deployment view of the system, encompassing the nodes that form the 
system's hardware topology on which the system executes. Apply deployment diagrams 



to model static aspects, and interaction diagrams, statechart diagrams, and activity 
diagrams to model the dynamic aspects. 

• Model the architectural patterns and design patterns that shape each of these models 
using collaborations. 

The Rational Unified Process is discussed in Chapter 2. 

Understand that you don't ever create a system's architecture in one big-bang event. Rather, a 
well-structured process for the UML involves the successive refinement of a system's architecture 
in a manner that is use case— driven, architecture-centric, and iterative and incremental. 

The UML's extensibility mechanisms are discussed in Chapter 6. 

For all but the most trivial systems, you'll have to manage versions of your system's artifacts. You 
can use the UML's extensibility mechanisms• and tagged values, in particular• to capture your 
decisions about the version of each element. 

Modeling Systems of Systems 

A system at one level of abstraction will look like a subsystem of a higher level of abstraction. 
Similarly, a subsystem at one level of abstraction will look like a full-fledged system from the 
perspective of the team responsible for creating it. 

All complex systems exhibit this kind of hierarchy. As you move to systems of greater and greater 
complexity, you'll find it necessary to decompose your effort into subsystems, each of which can 
be developed somewhat separately, and iteratively and incrementally grown into the whole 
system. The development of a subsystem looks just like the development of a system. 

To model a system or a subsystem, 

• Identify major functional parts of the system that may be developed, released, and 
deployed somewhat independently. Technical, political, legacy, and legal issues will often 
shape how you draw the lines around each subsystem. 

• For each subsystem, specify its context, just as you do for the system as a whole; the 
actors that surround a subsystem encompass all its neighboring subsystems, so they 
must all be designed to collaborate. 

• For each subsystem, model its architecture just as you do for the system as a whole. 

Hints and Tips 
It's important to choose the right set of models to visualize, specify, construct, and document a 
system. A well-structured model 

• Provides a simplification of reality from a distinct and relatively independent point of view. 

• Is self-contained in that it requires no other content to understand its semantics. 

• Is loosely coupled to other models via trace relationships. 

• Collectively (with other neighboring models) provides a complete statement of a system's 
artifacts. 

Similarly, it's important to decompose complex systems into well-structured subsystems. A well-
structured system 



• Is functionally, logically, and physically cohesive. 

• Can be decomposed into nearly independent subsystems that themselves are systems at 
a lower level of abstraction. 

• Can be visualized, specified, constructed, and documented via a set of interrelated, 
nonoverlapping models. 

Models have no special graphical representation in the UML (other than rendering them as 
stereotyped package icons), although you'll typically find them represented in tools as packages, 
each of which represents a partitioning of the elements of a system from a particular point of 
view. 

When you draw a system or a subsystem in the UML, 

• Use each as a starting point for all the artifacts associated with that system or subsystem. 

• Show only the basic aggregation among the system and its subsystems; typically, you'll 
leave the details of their connections to lower-level diagrams. 

Part VII: Wrapping Up 
 

 

Chapter 32. Applying the UML 
In this chapter 



• Transitioning to the UML 

• Where to go next 

Simple problems are easy to model with the UML. Hard problems are easy to model, too, 
especially after you've become fluent in the language. 

Reading about using the UML is one thing, but it's only through using the language that you will 
come to master it. Depending on your background, there are different ways to approach using the 
UML for the first time. As you gain more experience, you will come to understand and appreciate 
its more subtle parts. 

If you can think it, the UML can model it. 

Transitioning to the UML 
You can model 80 percent of most problems by using about 20 percent of the UML. Basic 
structural things, such as classes, attributes, operations, use cases, components, and packages, 
together with basic structural relationships, such as dependency, generalization, and association, 
are sufficient to create static models for many kinds of problem domains. Add to that list basic 
behavioral things, such as simple state machines and interactions, and you can model many 
useful aspects of a system's dynamics. You'll need to use only the more advanced features of the 
UML once you start modeling the things you encounter in more-complex situations, such as 
modeling concurrency and distribution. 

A conceptual model for the UML is discussed in Chapter 2. 

A good starting place for using the UML is to model some of the basic abstractions or behavior 
that already exist in one of your systems. Develop a conceptual model of the UML so that you'll 
have a framework around which you can grow your understanding of the language. Later on, 
you'll better understand how the more advanced parts of the UML fit together. As you attack 
more-complex problems, drill down into specific features of the UML by studying the common 
modeling techniques in this book. 

If you are new to object-orientation, 

• Start by getting comfortable with the idea of abstraction. Team exercises with CRC cards 
and use case analysis are excellent ways to develop your skills of identifying crisp 
abstractions. 

• Model a simple static part of your problem using classes, dependency, generalization, 
and association to get familiar with visualizing societies of abstractions. 

• Use simple sequence or collaboration diagrams to model a dynamic part of your problem. 
Building a model of user interaction with the system is a good starting place and will give 
you an immediate payback by helping you reason through some of the system's more 
important use cases. 

If you are new to modeling, 

• Start by taking a part of some system you've already built• preferably implemented in 
some object-oriented programming language, such as Java or C++• and build a UML 
model of these classes and their relationships. 

• Using the UML, try to capture some details of programming idioms or mechanisms you 
used in that system, which are in your head but you can't put down directly in the code. 



• Especially if you have a nontrivial application, try to reconstruct a model of its architecture 
by using UML packages to represent its major structural elements. 

• After you become comfortable with the vocabulary of the UML and before you start 
cutting code on your next project, build a UML model of that part of the system first. Think 
about the structure or behavior you've specified, and only then, when you are happy with 
its size, shape, and semantics, use that model as a framework for your implementation. 

If you are already experienced with another object-oriented method, 

• Take a look at your current modeling language and construct a mapping from its 
elements to the elements of the UML. In most cases• especially if you are currently 
using the Booch, OOSE, or OMT methods•  you'll find a one-to-one mapping and that 
most of the changes are cosmetic. 

• Consider some wicked modeling problem that you found clumsy or impossible to model 
with your current modeling language. Look at some of the advanced features of the UML 
that might address that problem with greater clarity or simplicity. 

If you are a power user, 

• Be sure you first develop a conceptual model of the UML. You may miss its harmony of 
concepts if you dive into the most sophisticated parts of the language without first 
understanding its basic vocabulary. 

• Pay particular attention to the UML's features for modeling components, concurrency, 
distribution, and patterns• issues that often involve complex and subtle semantics. 

• Look also at the UML's extensibility mechanisms and see how you might tailor the UML 
to directly speak the vocabulary of your domain. Take care to resist the temptation to go 
to extremes that yield a UML model that no one but other power users will recognize. 

Where to Go Next 
This user guide is part of a larger set of books that, collectively, can help you learn how to apply 
the UML. In addition to the user guide, there is The Unified Modeling Language Reference 
Manual, which provides a comprehensive reference to the syntax and semantics of the UML, and 
The Unified Software Development Process, which presents a recommended development 
process for use with the UML. 

To learn more about modeling from the principal authors of the UML, take a look at the following 
references: 

• Booch, G. Object-Oriented Analysis and Design with Applications, 2nd ed. Redwood City, 
California, Addison-Wesley Publishing Company, 1993. 

• Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G. Object- Oriented Software 
Engineering: A Use Case Driven Approach. Wokingham, England, Addison-Wesley 
Publishing Company, 1992. 

• Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-Oriented 
Modeling and Design. Englewood Cliffs, New Jersey, Prentice-Hall, 1991. 

You can read more about statecharts in 



• Harel, D. "Statecharts: A visual Formalism for Complex Systems," Science of Computer 
Programming 8 (1987), pp.231-274 (Also, Technical Report, The Weizman Institute, 
1984). 

The latest information about the UML can be found on the Web at http://www.rational.com. 
At that location and also at http://www.omg.org, you'll find the latest version of the UML 
standard. 

Appendix A. UML Notation 
A overview of the UML is discussed in Chapter 2. 

The UML is a language for visualizing, specifying, constructing, and documenting the artifacts of 
a software-intensive system. As a language, the UML has a well-defined syntax and semantics. 
The most visible part of the UML's syntax is its graphical notation. 

This appendix summarizes the elements of the UML notation. 

Things 
Structural Things 

Structural things are the nouns of UML models. These include classes, interfaces, collaborations, 
use cases, active classes, components, and nodes. 
 

 



 

 
Behavioral Things 

Behavioral things are the dynamic parts of UML models. These include interactions and state 
machines. 
 

 



 

 
Grouping Things 

Grouping things are the organizational parts of UML models. This includes packages. 
 

 
Annotational Things 

Annotational things are the explanatory parts of UML models. This includes notes. 



 

 

Relationships 
Dependency 

A dependency is a semantic relationship between two things in which a change to one thing (the 
independent thing) may affect the semantics of the other thing (the dependent thing). 
 

 
Association 

An association is a structural relationship that describes a set of links; a link is a connection 
among objects. 
 

 
Generalization 

Generalization is a specialization/generalization relationship in which objects of the specialized 
element (the child) are substitutable for objects of the generalized element (the parent). 



 

 

Extensibility 
The UML provides three mechanisms for extending the language's syntax and semantics: 
stereotypes (which represent new modeling elements), tagged values (which represent new 
modeling attributes), and constraints (which represent new modeling semantics). 

 

Diagrams 
A diagram is the graphical presentation of a set of elements, most often rendered as a connected 
graph of vertices (things) and arcs (relationships). A diagram is a projection into a system. The 
UML includes nine such diagrams. 

1. Class diagram  A structural diagram that shows a set of classes, interfaces, collaborations, 
and their relationships 

2. Object diagram  A structural diagram that shows a set of objects and their relationships 
3. Use case 
diagram  

A behavioral diagram that shows a set of use cases and actors and their 
relationships 

4. Sequence 
diagram  

A behavioral diagram that shows an interaction, emphasizing the time 
ordering of messages 

5. Collaboration 
diagram  

A behavioral diagram that shows an interaction, emphasizing the structural 
organization of the objects that send and receive messages 

6. Statechart 
diagram  

A behavioral diagram that shows a state machine, emphasizing the event-
ordered behavior of an object 

7. Activity diagram  A behavioral diagram that shows a state machine, emphasizing the flow from 
activity to activity 

8. Component 
diagram  

A structural diagram that shows a set of components and their relationships 



9. Deployment 
diagram  

A structural diagram that shows a set of nodes and their relationships 

Appendix B. UML Standard Elements 
The UML's extensibility mechanisms are discussed in Chapter 6. 

The UML provides a standard language for writing software blueprints. However, no language 
could ever be sufficient to express all nuances of all models across all domains for all time. The 
UML is therefore designed to be opened-ended, making it possible for you to extend the 
language in controlled ways. The UML's extensibility mechanisms include 

• Stereotypes 

• Tagged values 

• Constraints 

A stereotype extends the vocabulary of the UML, allowing you to create new kinds of building 
blocks that are derived from existing ones but are specific to your problem. A tagged value 
extends the properties of a UML building block, allowing you to create new information in that 
element's specification. A constraint extends the semantics of a UML building block, allowing you 
to add new rules or modify existing ones. 

Collectively, these three extensibility mechanisms allow you to shape and to grow the UML to 
your project's needs. These mechanisms also let the UML adapt to new software technology, 
such as the likely emergence of more- powerful distributed programming languages and the 
impact of fusion with hardware modeling languages for modeling systems. You can add new 
building blocks, modify the specification of existing ones, and even change their semantics. 
Naturally, it's important that you do so in controlled ways so that through these extensions, you 
remain true to the UML's purpose, namely, the communication of information. 

You can use the UML without ever needing these extensibility mechanisms. In fact, by treating 
variants of the UML's building blocks as extensions, the core of the UML is made smaller and 
simpler. 

However, as you build more-complex models and need to visualize or specify certain subtle, yet 
important, semantics, you'll find yourself using a few stereotypes, tagged values, and constraints 
over and over again. Some extensions are so common that they have been defined in the UML 
as standard elements. 

This appendix describes these standard elements. 

Stereotypes 
The following stereotypes are defined as standard elements of the UML. For each stereotype, the 
following table gives its name, the symbol of the UML to which it applies, and its meaning. 

Note 

Some items in this table are technically not stereotypes; they are standard keywords. 
The distinction is subtle. In the UML's metamodel, items such as trace are manifest, 
meaning that they are an explicit part of the metamodel and so are not really 
stereotypes. From the perspective of the developer, however, you still render them by 
using stereotype notation. These items are specified as standard keywords in order to 



reserve the use of their name in a manner that is consistent with the UML's 
metamodel. In the following table, keywords are highlighted in italics. 

 
Typically, a stereotyped element is rendered by placing the stereotype name above the element's 
name and enclosing the stereotype name in guillemets, as in »traceᑺ. Each stereotype may 
have an associated icon that may be used as an alternative form for visualizing the element. 
Although the UML does not specify such icons for any of the standard stereotypes, the following 
table offers a few suggested notations drawn from common practice. 

Stereotype/ Keywordord  Applies to 
symbol  Meaning  

actor  class Specifies a coherent set of roles that users of use 
cases play when interacting with these use cases 

access  dependency Specifies that the public contents of the target 
package are accessible to the namespace of the 
source package 

association  link end Specifies that the corresponding object is visible 
by association 

become  message Specifies that the target is the same object as the 
source but at a later point in time and with 
possibly different values, state, or roles 

bind  dependency Specifies that the source instantiates the target 
template using the given actual parameters 

call  dependency Specifies that the source operation invokes the 
target operation 

copy  message Specifies that the target object is an exact but 
independent copy of the source 

create  event message Specifies that the target object is created by the 
event or the message 

derive  dependency Specifies that the source may be computed from 
the target 

destroy  event message Specifies that the target object is destroyed by the 
event or the message 

document   

component Specifies a component that represents a 
document 

enumeration  class Specifies an enumerated type, including its 
possible values as a set of identifiers 

exception  class Specifies an event that may be thrown or caught 
by an operation 



executable  

component Specifies a component that may be executed on a 
node 

extend  dependency Specifies that the target use case extends the 
behavior of the source use case at the given 
extension point 

facade  package Specifies a package that is only a view on some 
other package 

file  component Specifies a component that represents a 
document containing source code or data 

framework   

package Specifies a package consisting mainly of patterns 

friend  dependency Specifies that the source is given special visibility 
into the target 

global  link end Specifies that the corresponding object is visible 
because it is in an enclosing scope 

import  dependency Specifies that the public contents of the target 
package enter the flat namespace of the source, 
as if they had been declared in the source 

implementation  generalization Specifies that the child inherits the 
implementation of the parent but does not make 
public nor support its interfaces, thereby violating 
substitutability 

implementa tionClass  class Specifies the implementation of a class in some 
programming language 

include  dependency Specifies that the source use case explicitly 
incorporates the behavior of another use case at 
a location spec ified by the source 

instanceOf  dependency Specifies that the source object is an instance of 
the target classifier 

instantiate  dependency Specifies that operations on the source class 
create instances of the target class 

interface  class Specifies a collection of operations that are used 
to specify a service of a class or a component 

invariant  constraint Specifies a constraint that must always hold for 
the associated element 



library   

component Specifies a static or dynamic object library 

local  link end Specifies that the corresponding object is visible 
because it is in a local scope 

metaclass  classifier Specifies a classifier whose objects are all 
classes 

model  package Specifies a semantically closed abstraction of a 
system 

parameter  link end Specifies that the corresponding object is visible 
because it is a parameter 

postcondition  constraint Specifies a constraint that must hold after the 
invocation of an operation 

powertype  class 
dependency 

Specifies a classifier whose objects are all the 
children of a given parent; specifies that the target 
is a power type of the source 

precondition  constraint Specifies a constraint that must hold before the 
invocation of an operation 

process  class Specifies a classifier whose instances represent a 
heavyweight flow 

refine  dependency Specifies that the source is at a finer degree of 
abstraction than the target 

requirement  comment Specifies a desired feature, property, or behavior 
of a system 

responsibility  comment Specifies a contract by or an obligation of the 
class 

self  link end Specifies that the corresponding object is visible 
because it is the dispatcher of the message 

send  dependency Specifies that the source operation sends the 
target event 

signal  class Specifies an asynchronous stimulus 
communicated among instances 

stereotype  class Specifies that the classifier is a stereotype that 
may be applied to other elements 

stub  package Specifies a package that serves as a proxy for the 
public contents of another package 

subsystem  package Specifies a grouping of elements of which some 
constitute a specification of the behavior offered 
by the other contained elements 

system  package Specifies a package representing the entire 
system being modeled 

table   

component Specifies a component that represents a 
database table 



thread  class Specifies a classifier whose instances represent a 
lightweight flow of control 

trace  dependency Specifies that the target is an historical ancestor 
of the source 

type  class Specifies an abstract class that is used only to 
specify the structure and behavior (but not the 
implementa tion) of a set of objects 

use  dependency Specifies that the semantics of the source 
element depends on the semantics of the public 
part of the target 

utility  class Specifies a class whose attributes and operations 
are all class-scoped 

Tagged Values 
The following tagged values are defined as standard elements of the UML. For each tagged 
value, this table gives its name, the element of the UML to which it applies, and its meaning. 

In most cases, a tagged value is rendered by placing the tag name and its value below the name 
of the element to which it is attached and enclosing the tagged value in braces, as in {location 
= client}. Tags with long text values may be rendered in a separate compartment at the 
bottom of the classifier's icon. 

Tagged value 
Applies to 

symbol  Meaning  
documentation all elements Specifies a comment, description, or explanation of the element 

to which it is attached 
location  most elements Specifies the node or component on which the element resides 
persistence  class 

association 
attribute 

Specifies if the state of the instance is preserved after the 
process that cre ated the instance terminates; values are 
persistent (preserve the value) and transient (do not preserve the 
value) 

semantics  class operation Specifies the meaning of the class or operation 

Constraints 
The following constraints are defined as standard elements of the UML. For each constraint, this 
table gives its name, the element of the UML to which it applies, and its meaning. 

In most cases, a constraint is rendered by placing it adjacent to an element and enclosing the 
constraint in braces, as in {complete}. You can also render a constraint by placing it in a note 
connected to its element by a dependency. 

Constraint 
Applies to 

symbol  Meaning  
complete  generalization Specifies that all children in the gen eralization have been specified 

in the model (although some may be elided in the diagram) and that 
no additional children are permitted 

destroyed  instance link Specifies that the instance or link is destroyed prior to completion of 
exe cution of the enclosing interaction 

disjoint  generalization Specifies that objects of the given parent may have no more than 
one of the given children as a type 

implicit  association Specifies that the relationship is not manifest but is only conceptual 



incomplete  generalization Specifies that not all children in the generalization have been 
specified (even if some are elided) and that additional children are 
permitted 

new  instance link Specifies that the instance or link is created during execution of the 
enclosing interaction 

or  association Specifies that, over a set of associa tions, exactly one is manifest for 
each associated object 

overlapping generalization Specifies that objects of the given parent may have more than one 
of the given children as a type 

transient  instance link Specifies that the instance or link is created during execution of the 
enclosing interaction but is destroyed before completion of execution 

Appendix C. Rational Unified Process 
A process is a set of partially ordered steps intended to reach a goal. In software engineering, 
your goal is to efficiently and predictably deliver a software product that meets the needs of your 
business. 

The UML is largely process-independent, meaning that you can use it with a number of software 
engineering processes. The Rational Unified Process is one such life cycle approach that is 
especially well-suited to the UML. The goal of the Rational Unified Process is to enable the 
production of highest quality software that meets end-user needs within predictable schedules 
and budgets. The Rational Unified Process captures some of the best current software 
development practices in a form that is tailorable for a wide range of projects and organizations. 
On the management side, the Rational Unified Process provides a disciplined approach on how 
to assign tasks and responsibilities within a software development organization. 

This appendix summarizes the elements of the Rational Unified Process. 

Characteristics of the Process 
The Rational Unified Process is an iterative process. For simple systems, it would seem perfectly 
feasible to sequentially define the whole problem, design the entire solution, build the software, 
and then test the end product. However, given the complexity and sophistication demanded of 
current systems, this linear approach to system development is unrealistic. An iterative approach 
advocates an increasing understanding of the problem through successive refinements and an 
incremental growth of an effective solution over multiple cycles. Built into the iterative approach is 
the flexibility to accommodate new requirements or tactical changes in business objectives. It also 
allows the project to identify and resolve risks sooner rather than later. 

The Rational Unified Process's activities emphasize the creation and maintenance of models 
rather than paper documents. Models• especially those specified using the UML• provide 
semantically rich representations of the software system under development. They can be viewed 
in multiple ways, and the information represented can be instantaneously captured and controlled 
electronically. The rationale behind the Rational Unified Process's focus on models rather than 
paper documents is to minimize the overhead associated with generating and maintaining 
documents and to maximize the relevant information content. 

Development under the Rational Unified Process is architecture-centric. The process focuses on 
the early development and baselining of a software architecture. Having a robust architecture in 
place facilitates parallel development, minimizes rework, and increases the probability of 
component reuse and eventual system maintainability. This architectural blueprint serves as a 
solid basis against which to plan and manage software component-based development. 



Development activities under the Rational Unified Process are use case�  driven. The Rational 
Unified Process places strong emphasis on building systems based on a thorough understanding 
of how the delivered system will be used. The notions of use cases and scenarios are used to 
align the process flow from requirements capture through testing and to provide traceable threads 
through development to the delivered system. 

The Rational Unified Process supports object-oriented techniques. Each model is object-oriented. 
Rational Unified Process models are based on the concepts of objects and classes and the 
relationships among them, and they use the UML as its common notation. 

The Rational Unified Process is a configurable process. Although no single process is suitable for 
all software development organizations, the Rational Unified Process is tailorable and can be 
scaled to fit the needs of projects ranging from small software development teams to large 
development organizations. The Rational Unified Process is founded on a simple and clear 
process architecture that provides commonality across a family of processes, and yet can be 
varied to accommodate various situations. Contained in the Rational Unified Process is guidance 
about how to configure the process to suit the needs of an organization. 

The Rational Unified Process encourages objective ongoing quality control and risk management. 
Quality assessment is built into the process, in all activities and involving all participants, using 
objective measurements and criteria. It is not treated as an afterthought or as a separate activity. 
Risk management is built into the process, so that risks to the success of the project are identified 
and attacked early in the development process, when there is time to react. 

Phases and Iterations 
A phase is the span of time between two major milestones of the process in which a well-defined 
set of objectives are met, artifacts are completed, and decisions are made whether to move into 
the next phase. As Figure C-1 illustrates, the Rational Unified Process consists of the following 
four phases: 

1. Inception  Establish the business case for the project 
2. Elaboration  Establish a project plan and a sound architecture 
3. Construction  Grow the system 
4. Transition  Supply the system to its end users 
Inception and elaboration encompass the engineering activities of the development life cycle; 
construction and transition constitute its production. 

Within each phase are a number of iterations. An iteration represents a complete development 
cycle, from requirements capture in analysis to implementation and testing, that results in the 
release of an executable project. 

Figure C-1 The Software Development Life Cycle 



 
Each phase and iteration has some risk mitigation focus and concludes with a well-defined 
milestone. The milestone review provides a point in time to assess how well key goals have been 
met and whether the project needs to be restructured in any way to proceed. 

Phases 

Inception    

During the inception phase, you establish the business case for the system and delimit the 
project's scope. The business case includes success criteria, risk assessment, estimates of the 
resources needed, and a phase plan showing a schedule of major milestones. During inception, 
it's common to create an executable prototype that serves as a proof of concept. 

At the end of the inception phase, you examine the life cycle objectives of the project and decide 
whether to proceed with full-scale development. 

Elaboration    

The goals of the elaboration phase are to analyze the problem domain, establish a sound 
architectural foundation, develop the project plan, and eliminate the highest risk elements of the 
project. Architectural decisions must be made with an understanding of the whole system. This 
implies that you describe most of the system's requirements. To verify the architecture, you 
implement a system that demonstrates the architectural choices and executes significant use 
cases. 

At the end of the elaboration phase, you examine the detailed system objectives and scope, the 
choice of architecture, and the resolution of major risks, and decide whether to proceed with 
construction. 

Construction    

During the construction phase, you iteratively and incrementally develop a complete product that 
is ready to transition to its user community. This implies describing the remaining requirements 



and acceptance criteria, fleshing out the design, and completing the implementation and test of 
the software. 

At the end of the construction phase, you decide if the software, sites, and users are all ready to 
go operational. 

Transition    

During the transition phase, you deploy the software to the user community. Once the system has 
been put into the hands of its end users, issues often arise that require additional development in 
order to adjust the system, correct some undetected problems, or finish some features that have 
been postponed. This phase typically starts with a beta release of the system, which is then 
replaced with the production system. 

At the end of the transition phase, you decide whether the life cycle objectives of the project have 
been met and determine if you should start another development cycle. This is also a point at 
which you wrap up the lessons learned on the project in order to improve your development 
process, which will be applied to the next project. 

Iterations 

Each phase in the Rational Unified Process can be further broken down into iterations. An 
iteration is a complete development loop resulting in a release (internal or external) of an 
executable product constituting a subset of the final product under development, which then is 
grown incrementally from iteration to iteration to become the final system. Each iteration goes 
through the various process workflows, although with a different emphasis on each process 
workflow, depending on the phase. During inception, the focus is on requirements capture. During 
elaboration, the focus turns toward analysis and design. In construction, implementation is the 
central activity, and transition centers on deployment. 

Development Cycles 

Going through the four major phases is called a development cycle, and it results in one software 
generation. The first pass through the four phases is called the initial development cycle. Unless 
the life of the product stops, an existing product will evolve into its next generation by repeating 
the same sequence of inception, elaboration, construction, and transition phases. This is the 
evolution of the system, so the development cycles after the initial development cycles are its 
evolution cycles. 

Process Workflows 

The Rational Unified Process consists of nine process workflows. 

1. Business modeling  Describes the structure and dynamics of the organization 
2. Requirements  Describes the use case— based method for eliciting requirements 
3. Analysis and design  Describes the multiple architectural views  
4. Implementation  Takes into account software development, unit test, and integration 
5. Test  Describes test cases, procedures, and defect-tracking metrics 
6. Deployment  Covers the deliverable system configuration 
7. Configuration 
management  

Controls changes to and maintains the integrity of a project's 
artifacts 

8. Project Management  Describes various strategies of working with an iterative process 
9. Environment  Covers the necessary infrastructure required to develop a system 



Captured within each process workflow is a set of correlated artifacts and activities. An artifact is 
some document, report, or executable that is produced, manipulated, or consumed. An activity 
describes the tasks• thinking steps, performing steps, and reviewing steps• performed by 
workers to create or modify artifacts, together with the techniques and guidelines to perform the 
tasks, possibly including the use of tools to help automate some of the tasks. 

Important connections among the artifacts are associated with certain of these process 
workflows. For example, the use case model generated during requirements capture is realized 
by the design model from the analysis and design process, implemented by the implementation 
model from the implementation process, and verified by the test model from the test process. 

Artifacts 

Each Rational Unified Process activity has associated artifacts, either required as an input or 
generated as an output. Some artifacts are used to direct input to subsequent activities, kept as 
reference resources on the project, or generated in a format as contractual deliverables. 

Models 

Modeling is discussed in Chapter 1. 

Models are the most important kind of artifact in the Rational Unified Process. A model is a 
simplification of reality, created to better understand the system being created. In the Rational 
Unified Process, there are nine models that collectively cover all the important decisions that go 
into visualizing, specifying, constructing, and documenting a software-intensive system. 

1. Business model  Establishes an abstraction of the organization 
2. Domain model  Establishes the context of the system 
3. Use case model  Establishes the system's functional requirements 
4. Analysis model 
(optional)  

Establishes an idea design 

5. Design model  Establishes the vocabulary of the problem and its solution 
6. Process model 
(optional)  

Establishes the system's concurrency and synchronization 
mechanisms 

7. Deployment model  Establishes the hardware topology on which the system is executed 
8. Implementation model  Establishes the parts used to assemble and release the physical 

system 
9. Test model  Establishes the paths by which the system is validated and verified 
Architecture is discussed in Chapter 2. 

A view is a projection into a model. In the Rational Unified Process, the architecture of a system 
is captured in five interlocking views: the design view, process view, deployment view, 
implementation view, and use case view. 

Other Artifacts 

The Rational Unified Process's artifacts are categorized as either management artifacts or 
technical artifacts. The Rational Unified Process's technical artifacts may be divided into four 
main sets. 

1. Requirements set  Describes what the system must do 
2. Design set  Describes how the system is to be constructed 
3. Implementation set  Describes the assembly of developed software components 
4. Deployment set  Provides all the data for the deliverable configuration 



Requirements Set    

This set groups all information describing what the system must do. This may comprise a use 
case model, a nonfunctional requirements model, a domain model, an analysis model, and other 
forms of expression of the user's needs, including but not limited to mock-ups, interface 
prototypes, regulatory constraints, and so on. 

Design Set    

This set groups information describing how the system is to be constructed and captures 
decisions about how the system is to be built, taking into account all the constraints of time, 
budget, legacy, reuse, quality objectives, and so forth. This may comprise a design model, a test 
model, and other forms of expression of the system's nature, including but not limited to 
prototypes and executable architectures. 

Implementation Set    

This set groups all information about the elements of the software that comprises the system, 
including but not limited to source code in various programming languages, configuration files, 
data files, software components, and so on, together with the information describing how to 
assemble the system. 

Deployment Set    

This set groups all information about the way the software is actually packaged, shipped, 
installed, and run on the target environment. 

Glossary 
abstract class  

A class that cannot be directly instantiated. 
 

abstraction  
The essential characteristics of an entity that distinguish it from all other kinds of entities. 
An abstraction defines a boundary relative to the perspective of the viewer. 
 

action  
An executable atomic computation that results in a change in state of the system or the 
return of a value. 
 

action expression  
An expression that evaluates to a collection of actions. 
 

action state  
A state that represents the execution of an atomic action, typically the invocation of an 
operation. 
 

activation  



The execution of an operation. 
 

active class  
A class whose instances are active objects. 
 

active object  
An object that owns a process or thread and can initiate control activity. 
 

activity  
Ongoing nonatomic execution within a state machine. 
 

activity diagram  
A diagram that shows the flow from activity to activity; activity diagrams address the 
dynamic view of a system. A special case of a state diagram in which all or most of the 
states are activity states and in which all or most of the transitions are triggered by 
completion of activities in the source states. 
 

actor  
A coherent set of roles that users of use cases play when interacting with the use cases. 
 

actual parameter  
A function or procedure argument. 
 

adornment  
Detail from an element's specification added to its basic graphical notation. 
 

aggregate  
A class that represents the "whole" in an aggregation relationship. 
 

aggregation  
A special form of association that specifies a whole-part relationship between the 
aggregate (the whole) and a component (the part). 
 

architecture  
The set of significant decisions about the organization of a software system, the selection 
of the structural elements and their interfaces by which the system is composed, together 
with their behavior as specified in the collaborations among those elements, the 



composition of these structural and behavioral elements into progressively larger 
subsystems, and the architectural style that guides this organization• these elements 
and their interfaces, their collaborations, and their composition. Software architecture is 
not only concerned with structure and behavior, but also with usage, functionality, 
performance, resilience, reuse, comprehensibility, economic and technology constraints 
and trade-offs, and aesthetic concerns. 
 

architecture-centric  
In the context of the software development life cycle, a process that focuses on the early 
development and baselining of a software architecture, then uses the system's 
architecture as a primary artifact for conceptualizing, constructing, managing, and 
evolving the system under development. 
 

argument  
A specific value corresponding to a parameter. 
 

artifact  
A piece of information that is used or produced by a software development process. 
 

association  
A structural relationship that describes a set of links, in which a link is a connection 
among objects; the semantic relationship between two or more classifiers that involves 
the connections among their instances. 
 

association class  
A modeling element that has both association and class properties. An association class 
can be seen as an association that also has class properties, or as a class that also has 
association properties. 
 

association end  
The endpoint of an association, which connects that association to a classifier. 
 

asynchronous action  
A request in which the sending object does not pause to wait for results. 
 

attribute  
A named property of a classifier that describes a range of values that instances of the 
property may hold. 
 



behavior  
The observable effects of an event, including its results. 
 

behavioral feature  
A dynamic feature of an element such as an operation or method. 
 

binary association  
An association between two classes. 
 

binding  
The creation of an element from a template by supplying arguments for the parameters of 
the template. 
 

Boolean  
An enumeration whose values are true and false. 
 

Boolean expression  
An expression that evaluates to a Boolean value. 
 

cardinality  
The number of elements in a set. 
 

child  
A subclass. 
 

class  
A description of a set of objects that share the same attributes, operations, relationships, 
and semantics. 
 

class diagram  
A diagram that shows a set of classes, interfaces, and collaborations and their 
relationships; class diagrams address the static design view of a system; a diagram that 
shows a collection of declarative (static) elements. 
 

classifier  



A mechanism that describes structural and behavioral features. Classifiers include 
classes, interfaces, datatypes, signals, components, nodes, use cases, and subsystems. 
 

client  
A classifier that requests service from another classifier. 
 

collaboration  
A society of roles and other elements that work together to provide some cooperative 
behavior that's bigger than the sum of all its parts; the specification of how an element, 
such as a use case or an operation, is realized by a set of classifiers and associations 
playing specific roles and used in a specific way. 
 

collaboration diagram  
An interaction diagram that emphasizes the structural organization of the objects that 
send and receive messages; a diagram that shows interactions organized around 
instances and their links to each other. 
 

comment  
An annotation attached to an element or a collection of elements. 
 

component  
A physical and replaceable part of a system that conforms to and provides the realization 
of a set of interfaces. 
 

component diagram  
A diagram that shows the organization of and dependencies among a set of components; 
component diagrams address the static implementation view of a system. 
 

composite  
A class that is related to one or more classes by a composition relationship. 
 

composite state  
A state that consists of either concurrent substates or disjoint substates. 
 

composition  
A form of aggregation with strong ownership and coincident lifetime of the parts by the 
whole; parts with nonfixed multiplicity may be created after the composite itself, but once 
created they live and die with it; such parts can also be explicitly removed before the 
death of the composite. 



 

concrete class  
A class that can be directly instantiated. 
 

concurrency  
The occurrence of two or more activities during the same time interval. Concurrency can 
be achieved by interleaving or simultaneously executing two or more threads. 
 

concurrent substate  
An orthogonal substate that can be held simultaneously with other substates contained in 
the same composite state. 
 

constraint  
An extension of the semantics of a UML element, allowing you to add new rules or modify 
existing ones. 
 

container  
An object that exists to contain other objects and that provides operations to access or 
iterate over its contents. 
 

containment hierarchy  
A namespace hierarchy consisting of elements and the aggregation relationships that 
exist between them. 
 

context  
A set of related elements for a particular purpose, such as to specify an operation. 
 

construction  
The third phase of the software development life cycle, in which the software is brought 
from an executable architectural baseline to the point at which it is ready to be 
transitioned to the user community. 
 

datatype  
A type whose values have no identity. Datatypes include primitive built-in types (such as 
numbers and strings), as well as enumeration types (such as Boolean). 
 

delegation  



The ability of an object to issue a message to another object in response to a message. 
 

dependency  
A semantic relationship between two things in which a change to one thing (the 
independent thing) may affect the semantics of the other thing (the dependent thing). 
 

deployment diagram  
A diagram that shows the configuration of run time processing nodes and the 
components that live on them; a deployment diagram addresses the static deployment 
view of a system. 
 

deployment view  
The view of a system's architecture that encompasses the nodes that form the system's 
hardware topology on which the system executes; a deployment view addresses the 
distribution, delivery, and installation of the parts that make up the physical system. 
 

derived element  
A model element that can be computed from another element, but that is shown for clarity 
or that is included for design purposes even though it adds no semantic information. 
 

design view  
The view of a system's architecture that encompasses the classes, interfaces, and 
collaborations that form the vocabulary of the problem and its solution; a design view 
addresses the functional requirements of a system. 
 

diagram  
The graphical presentation of a set of elements, most often rendered as a connected 
graph of vertices (things) and arcs (relationships). 
 

disjoint substate  
A substate that cannot be held simultaneously with other substates contained in the 
same composite state. 
 

distribution unit  
A set of objects or components that are allocated to a node as a group. 
 

domain  
An area of knowledge or activity characterized by a set of concepts and terminology 
understood by practitioners in that area. 



 

dynamic classification  
A semantic variation of generalization in which an object may change type or role. 
 

dynamic view  
An aspect of a system that emphasizes its behavior. 
 

elaboration  
The second phase of the software development life cycle, in which the product vision and 
its architecture are defined. 
 

element  
An atomic constituent of a model. 
 

elision  
Modeling an element with certain of its parts hidden to simplify the view. 
 

enumeration  
A list of named values used as the range of a particular attribute type. 
 

event  
The specification of a significant occurrence that has a location in time and space; in the 
context of state machines, an event is an occurrence of a stimulus that can trigger a state 
transition. 
 

execution  
The running of a dynamic model. 
 

export  
In the context of packages, to make an element visible outside its enclosing namespace. 
 

expression  
A string that evaluates to a value of a particular type. 
 

extensibility mechanism  



One of three mechanisms (stereotypes, tagged values, and constraints) that permit you 
to extend the UML in controlled ways. 
 

feature  
A property, such as an operation or an attribute, that is encapsulated within another 
entity, such as an interface, a class, or a datatype. 
 

fire  
To execute a state transition. 
 

focus of control  
A symbol on a sequence diagram that shows the period of time during which an object is 
performing an action directly or through a subordinate operation. 
 

formal parameter  
A parameter. 
 

forward engineering  
The process of transforming a model into code through a mapping to a specific 
implementation language. 
 

framework  
An architectural pattern that provides an extensible template for applications within a 
domain. 
 

generalization  
A specialization/generalization relationship, in which objects of the specialized element 
(the child) are substitutable for objects of the generalized element (the parent). 
 

guard condition  
A condition that must be satisfied in order to enable an associated transition to fire. 
 

implementation  
A concrete realization of the contract declared by an interface; a definition of how 
something is constructed or computed. 
 

implementation inheritance  



The inheritance of the implementation of a more specific element; also includes 
inheritance of the interface. 
 

implementation view  
The view of a system's architecture that encompasses the components used to assemble 
and release the physical system; an implementation view addresses the configuration 
management of the system's releases, made up of somewhat independent components 
that can be assembled in various ways to produce a running system. 
 

import  
In the context of packages, a dependency that shows the package whose classes may 
be referenced within a given package (including packages recursively embedded within 
it). 
 

inception  
The first phase of the software development life cycle, in which the seed idea for the 
development is brought to the point of being sufficiently well-founded to warrant entering 
into the elaboration phase. 
 

incomplete  
Modeling an element with certain of its parts missing. 
 

inconsistent  
Modeling an element for which the integrity of the model is not guaranteed. 
 

incremental  
In the context of the software development life cycle, a process that involves the 
continuous integration of the system's architecture to produce releases, with each new 
release embodying incremental improvements over the other. 
 

inheritance  
The mechanism by which more-specific elements incorporate the structure and behavior 
or more-general elements. 
 

instance  
A concrete manifestation of an abstraction; an entity to which a set of operations can be 
applied and that has a state that stores the effects of the operations. 
 

integrity  



How things properly and consistently relate to one another. 
 

interaction  
A behavior that comprises a set of messages that are exchanged among a set of objects 
within a particular context to accomplish a purpose. 
 

interaction diagram  
A diagram that shows an interaction, consisting of a set of objects and their relationships, 
including the messages that may be dispatched among them; interaction diagrams 
address the dynamic view of a system; a generic term that applies to several types of 
diagrams that emphasize object interactions, including collaboration diagrams, sequence 
diagrams, and activity diagrams. 
 

iteration  
A distinct set of activities with a baseline plan and evaluation criteria that results in a 
release, either internal or external. 
 

iterative  
In the context of the software development life cycle, a process that involves managing a 
stream of executable releases. 
 

interface  
A collection of operations that are used to specify a service of a class or a component. 
 

interface inheritance  
The inheritance of the interface of a more specific element; does not include inheritance 
of the implementation. 
 

level of abstraction  
One place in a hierarchy of abstractions ranging from high levels of abstraction (very 
abstract) to low levels of abstraction (very concrete). 
 

link  
A semantic connection among objects; an instance of an association. 
 

link end  
An instance of an association end. 
 



location  
The placement of a component on a node. 
 

mechanism  
A design pattern that applies to a society of classes. 
 

message  
A specification of a communication between objects that conveys information with the 
expectation that activity will ensue; the receipt of a message instance is normally 
considered an instance of an event. 
 

metaclass  
A class whose instances are classes. 
 

method  
The implementation of an operation. 
 

model  
A simplification of reality, created in order to better understand the system being created; 
a semantically closed abstraction of a system. 
 

multiple classification  
A semantic variation of generalization in which an object may belong directly to more 
than one class. 
 

multiple inheritanc  
A semantic variation of generalization in which a child may have more than one parent. 
 

multiplicity  
A specification of the range of allowable cardinalities that a set may assume. 
 

n-ary association  
An association among three or more classes. 
 

name  
What you call a thing, relationship, or diagram; a string used to identify an element. 



 

namespace  
A scope in which names may be defined and used; within a namespace, each name 
denotes a unique element. 
 

node  
A physical element that exists at run time and that represents a computational resource, 
generally having at least some memory and, often times, processing capability. 
 

note  
A graphic symbol for rendering constraints or comments attached to an element or a 
collection of elements. 
 

object  
A concrete manifestation of an abstraction; an entity with a well-defined boundary and 
identity that encapsulates state and behavior; an instance of a class. 
 

Object Constraint Language (OCL)  
A formal language used to express side effect— free constraints. 
 

object diagram  
A diagram that shows a set of objects and their relationships at a point in time; object 
diagrams address the static design view or static process view of a system. 
 

object lifeline  
A line in a sequence diagram that represents the existence of an object over a period of 
time. 
 

operation  
The implementation of a service that can be requested from any object of the class in 
order to affect behavior. 
 

package  
A general-purpose mechanism for organizing elements into groups. 
 

parameter  
The specification of a variable that can be changed, passed, or returned. 



 

parameterized element  
The descriptor for an element with one or more unbound parameters. 
 

parent  
A superclass. 
 

persistent object  
An object that exists after the process or thread that created it has ceased to exist. 
 

pattern  
A common solution to a common problem in a given context. 
 

phase  
The span of time between two major milestones of the development process during 
which a well-defined set of objectives are met, artifacts are completed, and decisions are 
made whether to move into the next phase. 
 

postcondition  
A constraint that must be true at the completion of an operation. 
 

precondition  
A constraint that must be true when an operation is invoked. 
 

primitive type  
A basic type, such as an integer or a string. 
 

process  
A heavyweight flow of control that can execute concurrently with other processes. 
 

process view  
The view of a system's architecture that encompasses the threads and processes that 
form the system's concurrency and synchronization mechanisms; a process view 
addresses the performance, scalability, and throughput of the system. 
 

product  



The artifacts of development, such as models, code, documentation, and work plans. 
 

projection  
A mapping from a set to a subset of it. 
 

property  
A named value denoting a characteristic of an element. 
 

pseudostate  
A vertex in a state machine that has the form of a state but doesn't behave as a state; 
pseudostates include initial, final, and history vertices. 
 

qualifier  
An association attribute whose values partition the set of objects related to an object 
across an association. 
 

realization  
A semantic relationships between classifiers, in which one classifier specifies a contract 
that another classifier guarantees to carry out. 
 

receive  
The handling of a message instance passed from a sender object. 
 

receiver  
The object handling a message instance passed from a sender object. 
 

refinement  
A relationship that represents a fuller specification of something that has already been 
specified at a certain level of detail. 
 

relationship  
A semantic connection among elements. 
 

release  
A relatively complete and consistent set of artifacts delivered to an internal or external 
user; the delivery of such a set. 



 

request  
The specification of a stimulus sent to an object. 
 

requirement  
A desired feature, property, or behavior of a system. 
 

responsibility  
A contract or obligation of a type or class. 
 

reverse engineering  
The process of transforming code into a model through a mapping from a specific 
implementation language. 
 

risk-driven  
In the context of the software development life cycle, a process in which each new 
release is focused on attacking and reducing the most significant risks to the success of 
the project. 
 

role  
The behavior of an entity participating in a particular context. 
 

scenario  
A specific sequence of actions that illustrates behavior. 
 

scope  
The context that gives meaning to a name. 
 

send  
The passing of a message instance from a sender object to a receiver object. 
 

sender  
The object passing a message instance to a receiver object. 
 

sequence diagram  



An interaction diagram that emphasizes the time ordering of messages. 
 

signal  
The specification of an asynchronous stimulus communicated between instances. 
 

signature  
The name and parameters of an operation. 
 

single inheritance  
A semantic variation of generalization in which a child may have only one parent. 
 

specification  
A textual statement of the syntax and semantics of a specific building block; a declarative 
description of what something is or does. 
 

state  
A condition or situation during the life of an object during which it satisfies some 
condition, performs some activity, or waits for some event. 
 

statechart diagram  
A diagram that shows a state machine; statechart diagrams address the dynamic view of 
a system 
 

state machine  
A behavior that specifies the sequences of states an object goes through during its 
lifetime in response to events, together with its responses to those events. 
 

static classification  
A semantic variation of generalization in which an object may not change type and may 
not change role. 
 

static view  
An aspect of a system that emphasizes its structure. 
 

stereotype  
An extension of the vocabulary of the UML, which allows you to create new kinds of 
building blocks that are derived from existing ones but that are specific to your problem. 



 

stimulus  
An operation or a signal. 
 

string  
A sequence of text characters. 
 

structural feature  
A static feature of an element. 
 

subclass  
In a generalization relationship, the specialization of another class, the parent. 
 

substate  
A state that is part of a composite state. 
 

subsystem  
A grouping of elements of which some constitute a specification of the behavior offered 
by the other contained elements. 
 

superclass  
In a generalization relationship, the generalization of another class, the child. 
 

supplier  
A type, class, or component that provides services that can be invoked by others. 
 

swimlane  
A partition on an interaction diagram for organizing responsibilities for actions. 
 

synchronous action  
A request in which the sending object pauses to wait for results. 
 

system  



Possibly decomposed into a collection of subsystems, a set of elements organized to 
accomplish a specific purpose and described by a set of models, possibly from different 
viewpoints. 
 

tagged value  
An extension of the properties of a UML element, which allows you to create new 
information in that element's specification. 
 

template  
A parameterized element. 
 

task  
A single path of execution through a program, a dynamic model, or some other 
representation of control flow; a thread or a process. 
 

thread  
A lightweight flow of control that can execute concurrently with other threads in the same 
process. 
 

time  
A value representing an absolute or relative moment. 
 

time event  
An event that denotes the time elapsed since the current state was entered. 
 

time expression  
An expression that evaluates to an absolute or relative value of time. 
 

timing constraint  
A semantic statement about the relative or absolute value of time or duration. 
 

timing mark  
A denotation for the time at which an event occurs. 
 

trace  
A dependency that indicates an historical or process relationship between two elements 
that represent the same concept, without rules for deriving one from the other. 



 

transient object  
An object that exists only during the execution of the thread or process that created it. 
 

transition  
The fourth phase of the software development life cycle, in which the software is turned 
into the hands of the user community; a relationship between two states indicating that an 
object in the first state will perform certain actions and enter the second state when a 
specified event occurs and conditions are satisfied. 
 

type  
A stereotype of class used to specify a domain of objects, together with the operations 
(but not methods) applicable to the objects. 
 

type expression  
An expression that evaluates to a reference to one or more types. 
 

UML  
The Unified Modeling Language, a language for visualizing, specifying, constructing, and 
documenting the artifacts of a software-intensive system. 
 

usage  
A dependency in which one element (the client) requires the presence of another element 
(the supplier) for its correct functioning or implementation. 
 

use case  
A description of a set of sequences of actions, including variants, that a system performs 
that yields an observable result of value to an actor. 
 

use case diagram  
A diagram that shows a set of use cases and actors and their relationships; use case 
diagrams address the static use case view of a system. 
 

use case� driven  
In the context of the software development life cycle, a process in which use cases are 
used as a primary artifact for establishing the desired behavior of the system, for verifying 
and validating the system's architecture, for testing, and for communicating among the 
stakeholders of the project. 
 



use case view  
The view of a system's architecture that encompasses the use cases that describe the 
behavior of the system as seen by its end users, analysts, and testers. 
 

value  
An element of a type domain. 
 

view  
A projection into a model, which is seen from a given perspective or vantage point and 
omits entities that are not relevant to this perspective. 
 

visibility  
How a name can be seen and used by others. 
 

 


