Am-mu. UsE CAsE
Phrives Ok
Mo wi UMI

i Ao i=Cinnees 1 Fusur

Front Matter
Table of Contents
About the Author

@htrung Release

Applying Use Case Driven Object Modeling with
UML: An Annotated e-Commerce Example

Doug Rosenberg
Kendall Scott
Publisher: Addison Wesley

First Edition June 14, 2001
ISBN: 0-201-73039-1, 176 pages

Applying Use Case Driven Object Modeling with UML: An
Annotated e-Commerce Example is a practical, hands-on
guide to putting use case methods to work in real-world
situations. This workbook is a companion to Use Case
Driven Object Modeling with UML. It bridges the gap
between the theory presented in the main book and the
practical issues involved in the development of an Internet
e-commerce application.

Uniquely conceived as a workbook and featuring as a
running example an e-commerce system for an online
bookstore, Applying Use Case Driven Object Modeling with
UML examines design in detail, demonstrating the most
common design mistakes and the correct design solutions.
The hands-on exercises allow you to detect, identify, and
correct critical errors on your own, before reviewing the
solutions provided in the book.

Structured around the proven ICONIX Process, this
workbook presents a streamlined approach to UML
modeling designed to avoid analysis paralysis without
skipping analysis and design. The book presents the four
key phases of this minimalist approach to use case driven
design--domain modeling, use case modeling, robustness
analysis, and sequence diagramming--and for each topic
provides an overview, detailed discussion, list of common
mistakes, and a set of exercises for honing object modeling
and design skills.

The three chapters on reviews are also unique. The authors
devote a chapter each to requirements review, preliminary
design review, and critical design review. This focus on
"designing quality in" by teaching how to review UML
models fills a major gap in the published literature.

Through examples, Applying Use Case Driven Object
Modeling with UML shows you how to avoid more than
seventy specific design errors, as illustrated by the "Top
10" error lists included as a handy key on the inside covers
and within each chapter. With the information, examples,
and exercises found here, you will develop the knowledge
and skills you need to apply use case modeling more
effectively to your next application.



Applying Use Case Driven Object Modeling with UML.:
An Annotated e-Commerce Example

Many of the designations used by the manufacturers and
sellers to distinguish their products are claimed as
trademarks. Where those designators appear in this book,
and Addison-Wesley was aware of the trademark claim,
the designations have been printed in itial capital letters or
all capital letters.

The authors and publisher have taken care in preparation
of this book, but make no expressed or implied warranty of
any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of
the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered
in quantity for special sales. For more information, please
contact:

Pearson Education Corporate Sales Division
One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419

corpsales@pearsontechgroup.com

Visit us on the Web at www.awl.com/cseng/.

Library of Congress Cataloging-in-Publication Data
Rosenberg, Doug.

Applying use case driven object modeling with UML: an
annotated e-commerce example / Doug Rosenberg,
Kendall Scott.

p. cm.



1. Object-oriented methods (Computer science) 2. UML
(Computer science) 3. Use cases (systems engineering) 4.
E-commerce. I. Scott, Kendall, 1960- I11. Title.

QA76.9.035 R63 2001
005.1'17—dc21
2001034319

© 2001 by Addison-Wesley.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

Text printed on recycled and acid-free paper
1234567 8 9-CRW-05 04 03 0201
First printing, June 2001

We dedicate this book to the memory of Tom Johnson,
whose steady and dependable work kept both of us busy
teaching the training workshops that gave us the source
material for this book.

Tom’s untimely passing as the manuscript was in final
production saddened all of us who knew him.

He will be sorely missed.



About the author
Doug Rosenberg, Kendall Scott

Doug Rosenber g, of ICONIX Software Engineering, Inc., has been providing system
development tools and training for nearly two decades, with particular emphasis on
object-oriented methods. He developed a Unified Booch/Rumbaugh/Jacobson design
method in 1993 that preceded Rational's UML by several years. He has produced over a
dozen multimedia training courses on object technology, including COMPREHENSIVE
COM and COMPLETE CORBA, and is the author of several Addison-Wesley titles.

Kendall Scott provides UML training and mentoring on a nationwide basis through
ICONIX. He has written several Addison-Wedley titles, including UML Explained. Heis
also the supporting author of UML Distilled UML Distilled, Second Edition and Use Case
Driven Object Modeling with UML.



T [ =S 6

o € = Tt TR 8
B TS 28 1 T = U o = 8
TRE PFEIMUSE ..ot b e bbbttt b e b s b e e ne et st e st b e st e e enas 8
A ed 2 1011,V [T [ s 1T g | S 10

Chapter 1. INTrOdUCTION ......coiiiee ettt bbbt e e bbb e sbe e e ne e e aneas 12
A Walk (Backwards) through the ICONIX ProCeSS......ccociiiiririniierere e 12
Key Features of the ICONIX PrOCESS ...ttt 21
Process FUNAAMENTAIS ...ttt et s ne s 22
The Process iN @ NUETSHEIl ... e 23
Requirements List for The Internet BOOKSTOre .........cccccvvevvvieienescece e 25

(g F=10) (=T b2 Yo T F= Y1 8 117/ (o Yo 1= 1] o o [0S 27
The Key Elements of Domain MOdeling .......ccovviiiiiiieiciesese e 28
The Top 10 Domain MOdeliNg EFTOrS ... 29
EXEBICISES ..ottt b e et b bRt b et R b et Rt b bRt bbbt b et eee 32
Bringing the PIieCeS TOGETNET ... e 37

Chapter 3. Use Case MOAEIING ..ottt st b b e e e 39
The Key Elements of Use Case MOdeliNg ... 40
The Top 10 Use Case MOAEliNG EFTOrS ...t 41
EXBICISES ..ttt ettt e bt bt bt e heeh e e e e a b e sEeeE e e heeaeeh e e Rt e R b e ne e beebeeheebeeneenee e entan 44
Bringing the PieCeS TOGETNET ... 50

Chapter 4. ReQUIrE€MENTS REVIEW ......cceiiceieieiesiise ettt se e se et sresre e eneeneenees 52
The Key Elements of ReqQUIremMents REVIEW ........cccvcevceeienininse s ceeseeieses e 52
The Top 10 Requirements REVIEW EFTOIS .......ccccvoviiierceeerese s seeae e se e eneeneens 54

Chapter 5. RODUSINESS ANAIYSIS ... e neenees 58
The Key Elements of RODUSTNESS ANAlYSIS ...t 60
The Top 10 RoObUSTNESS ANAIYSIS EFTOrS ..ot 62
EXEICISES ..ttt ettt e bt bt bt e heeh e et e a b e sEeeE e e Rt eaeeh e e e e Rt e eeeebe e bt eheebeeneene et entas 65
Bringing the PIieCeS TOGETNET ... e 74

Chapter 6. Preliminary DeSign REVIEW ...t 76
The Key Elements of Preliminary DeSign REVIEW ........ccccovvivivieiieieeienenie s seseeeeneens 76
THE TOP 10 PDR EITOIS ..oiiiiceieeeiesteste st st eteeee e sees e stestessesseesaessessessessessesnsensessessessessessessensensnns 79

(O gF=10) (=T AT =To [T g ToTc TN I IT= o | = g o 1S 82
The Key Elements of SEqUENCEe DIiagramS.......ccvivvieeeieerereninsesesesseeseeseese e ssesseseenseseens 82
Getting Started with SequeNnCe DIiagrams ........cccvvereeieereniesr s 84
The Top 10 Sequence Diagramming EFTOrS......ccccoioivceiereninse e see e seseeneeneens 86
EXEICISES ..ttt ettt b e bt bt e heeh e e e e a b e s A e e b e e Rt ehe e b e e Rt e Rt e ee e beebeeheebeeneenee e entas 89
Bringing the PIieCeS TOGETNET ... e 96

Chapter 8. Critical DeSIgN REVIEW .....cc.coiiiiiiiiiesiesereeee et ee e 100
The Key Elements of Critical DeSign REVIEW ..o 100
THE TOP 10 CDR EFTOFS ..oiiiuiieieieie ettt sttt ae st aesee b s be s aeeae e e eneeseesbesbesaesneeneaneees 104

2N 0] 0 1=T oo 1t Q2N o] o 1T 5 T 1= 108
USE CASE VIEW REPORT ..ottt sttt st sttt st st be st s 108

L2710 [0 T [ 7= o 0 ) /2 126



Figures

Figure 1-1: Use Cases to Code
Figure 1-2: Starting Off
Figure 1-3: Class Diagrams Map Out the Structure of the Code

Figure 1-4: Sequence Diagrams Help Us Allocate Operations
(Behavior) to Classes

Figure 1-5: Robustness Diagrams Close the Gap Between
Requirements and Detailed Design

Figure 1-6: Referencing Domain Objects by Name Removes Ambiguity
from the Use Cases

Figure 1-7: The ICONIX Process—A Streamlined Approach to UML
Modeling

Figure 1-8: Requirements Analysis

Figure 1-9: Analysis and Preliminary Design

Figure 1-10: Design

Figure 1-11: Implementation

Figure 2-1: Domain Modeling and the ICONIX Process
Figure 2-2: Domain Model for The Internet Bookstore
Figure 3-1: The ICONIX Process Is Use Case Driven
Figure 3-2: Use Case Diagram for The Internet Bookstore
Figure 4-1: Requirements Review and the ICONIX Process
Figure 5-1: Robustness Diagram Symbols

Figure 5-2: Robustness Analysis Bridges the Gap Between What and
How

Figure 5-3: Robustness Analysis Helps You Refine the Use Case Text
and the Domain Model

Figure 5-4: Robustness Model-Static Model Feedback Loop

Figure 5-5: Robustness Diagram Rules

Figure 5-6: Domain Model with Attributes for The Internet Bookstore
Figure 6-1: Preliminary Design Review and the ICONIX Process

Figure 7-1: Sequence Diagrams Drive the Allocation of Behavior to
Software Classes



Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:

Figure 8-1:

Building a Sequence Diagram

Static Model for The Internet Bookstore (Part 1)
Static Model for The Internet Bookstore (Part 2)
Static Model for The Internet Bookstore (Part 3)

Critical Design Review and the ICONIX Process



Preface

Theory, in Practice

In our first book, Use Case Driven Object Modeling with UML, we suggested that the
difference between theory and practice was that in theory, there is no difference
between theory and practice, but in practice, there is. In that book, we attempted to
reduce OOAD modeling theory to a practical subset that was easy to learn and pretty
much universally applicable, based on our experience in teaching this material to
people working on hundreds of projects since about 1993.

Now, two years after hitting the shelves, that book is in its fifth printing. But even
though our work has been favorably received, it seems like the job isn’t all the way
done yet. “We need to see more use case and UML modeling examples” is a phrase
we’'ve been hearing fairly often over the last couple of years. And, as we’ve used the
first book as the backbone of training workshops where we apply the theory to real
client projects, it has become clear that the process of reviewing the models is
critically important and not well understood by many folks.

So, although we present a fairly extensive example in our first book, we convinced
Addison-Wesley to let us produce this companion workbook, in which we dissect the
design of an Internet bookstore, step-by-step, in great detail. This involves showing
many common mistakes, and then showing the relevant pieces of the model with
their mistakes corrected. We chose an Internet bookstore because it’s relevant to
many of today’s projects in the Web-driven world, and because we’ve been teaching
workshops using this example and, as a result, had a rich source of classroom UML
models with real student mistakes in them.

We collected some of our favorite mistakes—that is, the kind of mistakes we saw
getting repeated over and over again—and built this workbook around those models.
And then we added three new chapters about reviews—one on requirements reviews,
one on preliminary design reviews, and one on critical design reviews.

What really makes this book unique, though, is the fact that you, the reader, get to
correct the mistakes.

The Premise

After we give you an overview of the ICONIX process in Chapter 1, four of the seven
subsequent chapters address the four key phases of the process in some detail. The
format of each of these chapters is as follows:

?? The first part describes the essence of domain modeling (Chapter 2), use case
modeling (Chapter 3), robustness analysis (Chapter 5), or sequence diagrams
(Chapter 7), and places the material in the context of the “big picture” of the
process. In each of these chapters, you’ll work through pieces of the Internet
bookstore example, and then you’ll see an overview diagram at the end of the
chapter that brings the relevant pieces together. We present fragments of ten
different use cases in Chapter 3; we carry five of these forward through
preliminary design and detailed design in Chapters 5 and 7, respectively. (The



fragments of class diagrams that appear in Chapter 2 also trace into the use
case text and to full class diagrams that appear in Chapters 5 and 7.)

?? The next section describes the key elements of the given phase. Each of these
sections is basically a condensed version of an associated chapter in Use Case
Driven Object Modeling with UML, with some new information added within
each chapter.

?? The following section describes the top 10 mistakes that our students tend to
make during workshops in which we teach the process. We've added five new
Top 10 lists in this book: Top 10 robustness analysis errors, Top 10 sequence
diagramming errors, and Top 10 mistakes to avoid for each of the three
“review” chapters.

?? The final section presents a set of five exercises for you to work, to test your
knowledge of the material in the chapter.

The following aspects are common to each set of exercises:

?? There’s a red box, with a white label, at the top of each right-hand page. For
the domain modeling and use case exercises, this label takes the form
Exercise X; for the robustness analysis and sequence diagram exercises, the
label takes the form of a use case name. (We’ll explain the significance of this
soon.)

?? There are three or four mistakes on each right-hand page. Each mistake has
a “Top 10” logo next to it that indicates which rule is being violated.

?? The left-hand page on the flip side of each “red” page has a black box, with a
white label, at the top. Corrections to the errors presented on the associated
“bad” page are explicitly indicated; explanations of the mistakes appear at the
bottom of the page.

Your task is to write corrections on each “bad” exercise page before you flip it over
to see the “good” exercise diagram.

To summarize: Chapter 2 presents classes used by the ten sample use cases.
Chapter 3 presents fragments from all of those use cases. Chapters 5 and 7 present
diagrams connected with five of the use cases. The idea is that you’ll move from a
partial understanding of the use cases through to sequence diagrams that present
full text, and some of the associated elements of the detailed design, for each use
case.

What about the other three chapters, you ask?

?? Chapter 4 describes how to perform requirements review, which involves
trying to ensure that the use cases and the domain model work together to
address the customers’ functional requirements.

?? Chapter 6 describes how to perform preliminary design review (PDR), which
involves trying to ensure that robustness diagrams exist for all use cases (and
are consistent with those use cases), the domain model has a fairly rich set of
attributes that correspond well with whatever prototypes are in place (and all
of the objects needed by the use cases are represented in that model), and
the development team is ready to move to detailed design.



?? Chapter 8 describes how to perform critical design review (CDR), which
involves trying to ensure that the “how” of detailed design, as shown on
sequence diagrams, matches up well with the “what” that the use cases
specify, and that the detailed design is of sufficient depth to facilitate a
relatively small and seamless leap into code.

All three of these review chapters offer overviews, details, and top 10 lists, but we
don’t make you work any more exercises. What these reviews have in common is the
goal of ensuring consistency of the various parts of the model, as expressed on the
“good” exercise diagrams.

The Appendix contains a report that summarizes the model for the bookstore; you
can download the full model from http://www.iconixsw.com/WorkbookExample.html.
The Appendix contains all of the diagrams that appear in the body of the book, but
the full model includes design details for the other five use cases. This allows you to
go through these use cases as further exercises, and then compare your results to
ours; we highly recommend that you do this.

Cool premise, isn’'t it? We’re not aware of another book like this one, and we’re
hoping you’ll find it useful in your efforts to apply use case driven object modeling
with UML.

Acknowledgments

Doug would like to thank his intrepid crew at ICONIX, especially Andrea Lee for her
work on the script for the Inside the ICONIX Process CD, which we borrowed heavily
from for Chapter 1, along with Chris Starczak, Jeff Kantor, and Erin Arnold. Doug
would also like to thank Kendall for (finally) agreeing that yes, this would make the
book better, and yes, we do have time to add that, and yes, the fact that R comes
before S does mean that Mr. Rosenberg has more votes than Mr. Scott. [Co-author’s
note to self: Get name legally changed to Scott Kendall before the next book comes
out. That'll teach him.]

Doug and Kendall would like to thank Paul Becker and all the fine folks at Addison-
Wesley (including Ross Venables, who’s no longer there but who got this project off
the ground) who somehow managed to compress the production schedule to
compensate for the delays in the writing schedule (which are all Kendall’s fault).
We’'d also like to thank the reviewers of the manuscript, especially Mark Woodbury,
whose incisive comments about “defragmenting” the example gave us the push we
needed to get it the point where we think it’'s really, really cool as opposed to just
really cool. And, we’d like to thank Greg Wilson, who reviewed our first book for Dr.
Dobbs’ Journal, liked it, and suggested that we write a companion workbook.
Specifically, he said: “The second criticism of this book is one that | thought I’d
never make: It is simply too short. Having finally found a useful, readable, and
practical description of a design-centered development methodology, | really wanted
a dozen or more examples of each point to work through. If the authors were to
produce a companion workbook, | can promise them that they’'d have at least one
buyer.”

Finally, Kendall would like to thank Doug for raising the art of snarkiness to a level
that makes Kendall look like a paragon of good cheer in comparison to Doug.

Doua Rosenbera Kendall Scott




Santa Monica, California
May 2001
dougr@iconixsw.com
http://www.iconixsw.com

Harrison, Tennessee
May 2001
kendall@usecasedriven.com

http://www.usecasedriven.com




Chapter 1. Introduction

The ICONIX process sits somewhere in between the very large Rational Unified
Process (RUP) and the very small eXtreme programming approach (XP). The ICONIX
process is use case driven, like the RUP, but without a lot of the overhead that the
RUP brings to the table. It's also relatively small and tight, like XP, but it doesn’t
discard analysis and design like XP does. This process also makes streamlined use of
the Unified Modeling Language (UML) while keeping a sharp focus on the traceability
of requirements. And, the process stays true to lvar Jacobson’s original vision of
what “use case driven” means, in that it results in concrete, specific, readily
understandable use cases that a project team can actually use to drive the
development effort.

The approach we follow takes the best of three methodologies that came into
existence in the early 1990s. These methodologies were developed by the folks that
now call themselves the “three amigos”: Ivar Jacobson, Jim Rumbaugh, and Grady
Booch. We use a subset of the UML, based on Doug’s analysis of the three individual
methodologies.

There’s a quote in Chapter 32 of The Unified Modeling Language User Guide, written
by the amigos, that says, “You can model 80 percent of most problems by using
about 20 percent of the UML.” However, nowhere in this book do the authors tell you
which 20 percent that might be. Our subset of the UML focuses on the core set of
notations that you’ll need to do most of your modeling work. Within this workbook
we also explain how you can use other elements of the UML and where to add them
as needed.

One of our favorite quotes is, “The difference between theory and practice is that in
theory, there is no difference between theory and practice, but in practice, there is.”
In practice, there never seems to be enough time to do modeling, analysis, and
design. There’s always pressure from management to jump to code, to start coding
prematurely because progress on software projects tends to get measured by how
much code exists. Our approach is a minimalist, streamlined approach that focuses
on that area that lies in between use cases and code. Its emphasis is on what needs
to happen at that point in the life cycle where you’re starting out: you have a start
on some use cases, and now you need to do a good analysis and design.

Our goal has been to identify a minimal yet sufficient subset of the UML (and of
modeling in general) that seems generally to be necessary in order to do a good job
on your software project. We’'ve been refining our definition of “minimal yet
sufficient” in this context for eight or nine years now. The approach we're telling you
about in this workbook is one that has been used on hundreds of projects and has
been proven to work reliably across a wide range of industries and project situations.

A Walk (Backwards) through the ICONIX Process

Figure 1-1 shows the key question that the ICONIX process aims to answer.

Figure 1-1. Use Cases to Code



“J

=J

=
]

* Code

X

Use Case
Model

009

How do we get from use cases to code?

What we’re going to illustrate is how to get from point A to point B directly, in the
shortest possible time. (Actually, we’re not going to go all the way to code, but we’ll
take you close enough so you can taste it.) You can think of point A as representing
this thought: “I have an idea of what my system has to do, and | have a start on
some use cases,” and point B as representing some completed, tested, debugged
code that actually does what the use cases said it needed to do. In other words, the
code implements the required behavior, as defined by the use cases. This book
focuses on how we can get you from the fuzzy, nebulous area of “I think I want it to
do something like this” to making those descriptions unambiguous, complete, and
rigorous, so you can produce a good, solid architecture, a robust software design,
then (by extension) nice clean code that actually implements the behavior that your
users want.

We’'re going to work backwards from code and explain the steps to our goal. We’'ll
explain why we think the set of steps we’re going to teach is the minimal set of steps
you need, yet is sufficient for most cases in closing the gap between use cases and
code. Figure 1-2 shows the three assumptions we’re going to make to start things
off: that we’ve done some prototyping; that we have made some idea of what our
user interface might look like; and that we might have some start in identifying the
scenarios or use cases in our system.

Figure 1-2. Starting Off



= e

D )

. : Q4 =
= 1‘:’:} 1<
A

i B s |

GUI Protolype Uise Case -

Model

|

i:r,:;} | Code |

This puts us at the point where we’'re about to launch into analysis and design. What
we want to find out is how we can get from this starting point to code. When we
begin, there’s only a big question mark—we have some nebulous, fuzzy ideas of
what our system has to do, and we need to close this gap before we start coding.

In object-oriented systems, the structure of our code is defined by classes. So,
before we write code, we’d like to know what our software classes are going to be.
To do this, we need one or more class diagrams that show the classes in the system.
On each of these classes, we need a complete set of attributes, which are the data
members contained in the classes, and operations, which define what the software
functions are. In other words, we need to have all our software functions identified,
and we need to make sure we have the data those functions require to do their job.

We’'ll need to show how those classes encapsulate that data and those functions. We
show how our classes are organized and how they relate to each other on class
diagrams. We'll use the UML class diagram as the vehicle to display this information.
Ultimately, what we want to get to is a set of very detailed design-level class
diagrams. By design-level, we mean a level of detail where the class diagram is
very much a template for the actual code of the system—it shows exactly how your
code is going to be organized.

Figure 1-3 shows that class diagrams are the step before code, and there is a
design-level diagram that maps one-to-one from classes on your diagram to classes
in your source code. But there’s still a gap. Instead of going from use cases to code,
now we need to get from use cases to design-level class diagrams.

Figure 1-3. Class Diagrams Map Out the Structure of the Code



== Y=

—=| ==l r[ Ty

GUI Prototype Por—

Clasa

Diaaram
One of the hardest things to do in object-oriented software development is behavior
allocation, which involves making decisions for every software function that you’re
going to build. For each function, you have to decide which class in your software
design should be the class that contains it. We need to allocate all the behavior of
the system—every software function needs to be allocated into the set of classes
that we’re designing.

One UML diagram that’s extremely useful in this area is the sequence diagram. This
diagram is an ideal vehicle to help you make these behavior allocation decisions.
Sequence diagrams are done on a per-scenario basis: for every scenario in our
system, we’ll draw a sequence diagram that shows us which object is responsible for
which function in our code. The sequence diagram shows how runtime object
instances communicate by passing messages. Each message invokes a software
function on the object that receives the message. This is why it’s an ideal diagram
for visualizing behavior allocation.

Figure 1-4 shows that the gap between use cases and code is getting smaller as we
continue to work backwards. Now, we need to get from use cases to sequence
diagrams.

Figure 1-4. Sequence Diagrams Help Us Allocate Operations (Behavior) to
Classes



———l, _-_ = . _a"l_r'_l.__
.._ = !:IE " ;]. -'_._ _.-I I::_::J' =

— 1=
L =] |

Uss Caas
Madel Sequence

GUI Prololype

, =~ o=
7 = M |

| I e =l | [Code

Class
Diimgriem

We’ll make our decisions about allocating behavior to our classes as we draw the
sequence diagrams. That's going to put the operations on the software classes.
When you use a visual modeling tool such as Rational Rose or GDPro, as you draw
the message arrows on the sequence diagrams, you're actually physically assigning
operations to the classes on the class diagrams. The tool enforces the fact that
behavior allocation happens from the sequence diagram. As you're drawing the
sequence diagram, the classes on the class diagram get populated with operations.

So, the trick is to get from use cases to sequence diagrams. This is a non-trivial
problem in most cases because the use cases present a requirements-level view of
the system, and the sequence diagram is a very detailed design view. This is where
our approach is different from the other approaches on the market today. Most
approaches talk about use cases and sequence diagrams but don’t address how to
get across the gap between the fuzzy use cases and a code-like level of detail on the
sequence diagrams. Getting across this gap between what and how is the central
aspect of the ICONIX process.

What we’re going to do now is close the gap between the fuzzy, nebulous use case
and the very detailed and precise sequence diagram with another kind of diagram
called a robustness diagram. The robustness diagram sits in the gap between
requirements and detailed design; it will help make getting from the use cases to the
sequence diagrams easier.

If you've been looking at UML literature, the robustness diagram was originally only
partially included in the UML. It originated in Ivar Jacobson’s work and got included
in the UML standard as an appendage. This has to do with the history and the
sequence of how Booch, Rumbaugh, and Jacobson got together and merged their
methodologies, as opposed to the relative importance of the diagram in modeling.

Across the top of a sequence diagram is a set of objects that are going to be
participating in a given scenario. One of the things we have to do before we can get
to a sequence diagram is to have a first guess as to which objects will be
participating in that scenario. It also helps if we have a guess as to what software
functions we’ll be performing in the scenario. While we do the sequence diagram,



we’ll be thinking about mapping the set of functions that will accomplish the desired
behavior onto that set of objects that participate in the scenario.

It helps a great deal to have a good idea about the objects that we’ll need and the
functions that those objects will need to perform. When you do it the second time,
it's a lot more accurate than when you take a first guess at it. The process that we're
following, which is essentially Ivar Jacobson’s process as described in his Objectory
work, is a process that incorporates a first guess, or preliminary design, the results
of which appear on what we call a robustness diagram. We refine that first guess into
a detailed design on the sequence diagram. So, we’ll do a sequence diagram for each
scenario that we’re going to build.

Figure 1-5 shows that we’re adding a diagram to our subset of UML. The robustness
diagram was described in the original UML specs, but its definition was in an extra
document called Objectory Process-Specific Extensions. What we’ve found over the
past ten years is that it’s very difficult to get from use cases to sequence diagrams
without this technique. Using the robustness diagram helps avoid the common
problem of project teams thrashing around with use cases and not really getting
anywhere towards their software design. If you incorporate this step, it will make
this process and your project much easier. We didn’t invent robustness analysis, but
we're trying to make sure it doesn’t get forgotten. Robustness analysis has proven to
be an invaluable aid in getting across the gap between requirements and design.

Figure 1-5. Robustness Diagrams Close the Gap Between Requirements and
Detailed Design

GUI Prototype i e B
Y Wi ey Saquence
T -0 Dinggram
Diagram -

Y

L] |-';Em&»a;f

Class

Dimgram
Robustness analysis sits right in the gap between what the system has to do and
how it’s actually going to accomplish this task. While we’re crossing this gap, there
are actually several different activities that are going on concurrently. First, we're
going to be discovering objects that we forgot when we took our first guess at what
objects we had in the system. We can also add the attributes onto our classes as we
trace data flow on the robustness diagrams. Another important thing we’ll do is
update and refine the text of the use case as we work through this diagram.



We still have a question mark, though. That question mark relates to the comment
we just made about discovering the objects that we forgot when we took our first
guess. This implies that we’re going to take a first guess at some point.

There’s a magic phrase that we use to help teach people how to write use cases
successfully: Describe system usage in the context of the object model. The first
thing this means is that we’re not talking, in this book, about writing fuzzy, abstract
and vague, ambiguous use cases that don’t have enough detail in them from which
to produce a software design. We’re going to teach you to write use cases that are
very explicit, precise, and unambiguous. We have a very specific goal in mind when
discussing use cases: we want to drive the software design from them. Many books
on use cases take a different perspective, using use cases as more of an abstract
requirements exploration technique. Our approach is different because our goals are
different. Remember, our mission is to help you get from use cases to code.

We’'ll start out with something called a domain model, which is a kind of glossary of
the main abstractions—in other words, the most important nouns that are in our
problem space (our problem domain). In the term domain model, the word
“domain” comes from the idea of the problem domain. For example, if our problem
domain is electronic commerce—as it is in the workbook, amazingly enough—we’ll
probably have a domain object like a catalog or a purchase order. We’re going to call
these nouns that belong to our problem space domain objects, and we’re going to
produce, at the very beginning of our analysis and design activities, something called
a domain model, which lays all these domain objects out on one big UML class
diagram.

On our robustness diagrams, we’re also going to use something called boundary
objects. Among the boundary objects, we find things like the screens of the system.
In the text of our use cases, we want to explicitly reference both domain objects and
boundary objects. We’ll write about such things as how the users interact with the
screens and how those screens interact with the domain objects, which often have
some mapping onto a database that may sit behind the OO part of our system. Our
use case text will get a lot more specific and a lot less ambiguous if we follow this
guideline of describing how the system is used in the context of the object model as
it evolves.

During domain modeling, we want to identify the most important set of abstractions
that describe the problem space, or the problem domain of the system, that we need
to build. For this task, we’ll follow the methodology Jim Rumbaugh developed: the
Object Modeling Technique (OMT), which is a very thorough treatment of some
useful techniques for helping us do this domain model.

One difference between our approach and some of the other use case—oriented
approaches you might run across is that we insist on starting the whole process with
domain modeling. In writing our use cases against the set of nouns in the domain
model, thus using that domain model as a glossary, we can unambiguously define a
set of terms that we can reference within our use case text. This approach proves to
be quite useful, especially when you’re working in a team environment where there
are multiple groups of people that are trying to describe scenarios in different parts
of the system. If you get closure and agreement on what the important nouns in the
system are, you eliminate whole layers of ambiguity in the use case models. For
example, this enables you to be clear on what a purchase order is, what a line item
is, and what a shopping cart is. All those things are clear from the beginning, due to
the fact that we’ve defined a glossary of terms before we start writing our use cases.



In terms of the UML, the domain model is basically a class diagram, so it’s the same
kind of diagram as our design-level class diagram. Generally, on the domain model,
we suppress quite a bit of detail; in particular, we don’t show the attributes and the
operations on the classes. The domain model is more of a global summary-level class
diagram. In fact, it's a first guess at a class diagram, focusing entirely on the
problem domain of the system we’re building. We take this first guess at our class
diagram, and then we work through all the details of our use cases and refine our
view of the system. As we work through the scenarios, the first-guess class diagram
evolves into our detailed static model for the system.

As you can see in Figure 1-6, we now have a fairly complete picture, with no big
gaps in it, that helps us get from use cases and prototypes over on the left side to
design-level class diagrams and source code over on the right side.

Figure 1-6. Referencing Domain Objects by Name Removes Ambiguity from
the Use Cases

= ii
==
Sequence
Dlagram
\-.._-_ Robustness /;‘
Diagram —
Static —
= Ecall
Fa i) —
oL, = o
—t H t— -| |I
Dampin Clags
Madel Diagram

Note that we’re using a very streamlined approach. We’'re only using four different
kinds of UML diagrams. That’s four out of a set of nine different kinds of diagrams
that make up the UML. Generally, for most projects, most of the time you can do
most of your work using less than half of the UML. Limiting your focus to this core
subset of diagrams will make a significant impact on your learning curve as you learn
how to do modeling with UML.

We’'re going to start off with the domain model, which is an analysis-level class
diagram, as our first guess at the static structure of the system. We’re going to
continuously refine and add detail to this model, with the ultimate result being our
detailed design. The class diagram, which is in the bottom half of Figure 1-6, is a
static description of how the code is organized, whereas the use cases are a dynamic
description of the runtime behavior.

We’'ll take the first guess at our static model, and then we’ll spend most of our time
working through use case after use case. Every time we work through a use case,
we’ll add some detail to the class diagram. After we work through all the scenarios
that the system has to support, add in all the detail needed to make all those



scenarios happen, and review what we’ve done a couple of times, we should have a
design that meets the requirements, and we’ll be well positioned to write code.

Figure 1-7 shows the “big picture” for the ICONIX process. This figure appears on the
first page of every chapter in our book Use Case Driven Object Modeling with UML.
The picture has two parts to it: The top part is the dynamic model, which describes
behavior, and the bottom part is the static model, which describes structure.

Figure 1-7. The ICONIX Process—A Streamlined Approach to UML Modeling

: I:l',rnamlr: 0
— H — .-|\!I|'I|I
— o A2 = e 2 |
== %S|~ "> [
= ; ., =|_IE3 |
GUI Frotatype | ) .
| £ okt Sequence
: i ) Diagram
| i Aobustress /
I:Irn-gmm ==
i Slatu:
B
1 =
= = H - ;
| Damain i
] Class
! Medel Diagram

We might start with some prototypes, or perhaps simple line drawings of our
screens. Then, after getting some assurance from users that we’re on the right track,
we can work from this beginning to identify use cases on our use case diagram,
which shows all the scenarios that the system has to perform. Then we write the text
of our use cases. We refine the use case text during robustness analysis. It's
important to try to get the text stabilized and corrected during the preliminary design
phase before moving into detailed design, which we do on sequence diagrams.

Many people complain about constantly changing requirements. Some use this as an
excuse to start coding prematurely. We’'re willing to bet that the vast majority of
these folks have never used robustness analysis, which is enormously helpful in
getting those requirements stabilized.

By breaking exploration of the dynamic model into these three steps, we get two
chances to review the behavior description; hopefully, by the time we’ve reviewed it
the second time, our understanding of the required behavior is detailed and fairly
stable, and we can start designing against it.

As you can see on the static part of the picture, we start with a quick first guess
about objects based totally on the problem space description. We go through one
long continuous refinement that’s driven by our analysis of the dynamic runtime
behavior of the system. We think in detail how one scenario is supposed to work,
then update our class diagrams based on our improved understanding of that. Then,
we go back and think more about what the behavior of the system should be.



Next, we refine our software structure accordingly. Our approach, which is derived
80 percent from lvar Jacobson’s work, is a very natural way to decompose systems
along use case boundaries, and then use the results of the use case analysis to drive
the object modeling forward to a level that’s detailed enough to code from.

Key Features of the ICONIX Process

Figure 1-7 shows the essence of a streamlined approach to software development
that includes a minimal set of UML diagrams, and some valuable techniques, that
you can use to get from use cases to code quickly and efficiently. The approach is
flexible and open; you can always elect to use other aspects of the UML to
supplement the basic materials.

We’'d like to point out three significant features of this approach.

First, the approach offers streamlined usage of the UML. The steps that we describe
in the upcoming chapters represent a “minimalist” approach—they comprise the
minimal set of steps that we’ve found to be necessary and sufficient on the road to a
successful OO development project. By focusing on a subset of the large and often
unwieldy UML, a project team can also head off “analysis paralysis” at the pass.

Second, the approach offers a high degree of traceability. At every step along the
way, you refer back to the requirements in some way. There is never a point at
which the process allows you to stray too far from the user’s needs. Traceability also
refers to the fact that you can track objects from step to step, as well, as analysis
melds into design.

Third, the approach is iterative and incremental, although we might not be using
these terms in the traditional sense. Multiple iterations occur between developing the
domain model and identifying and analyzing the use cases. Other iterations exist, as
well, as the team proceeds through the life cycle. The static model gets refined
incrementally during the successive iterations through the dynamic model (composed
of use cases, robustness analysis, and sequence diagrams). Please note, though,
that the approach doesn’t require formal milestones and a lot of bookkeeping;

rather, the refinement efforts result in natural milestones as the project team gains
knowledge and experience.

As we described in the Preface, we're going to demonstrate these aspects of the
ICONIX process in the context of an on-line bookstore; the focus will be on the
customer’s view of the system.

The fact that we’ve been able to teach this process, with only minimal changes, over
an entire decade, with it remaining useful and relevant today, is made possible
because our process is based on finding the answers to some fundamentally
important questions about a system. These questions include the following:

?? Who are the users of the system (the actors), and what are they trying to do?

?? What are the “real world” (problem domain) objects and the associations
among them?

?? What objects are needed for each use case?

?? How do the objects collaborating within each use case interact?



?? How will we handle real-time control issues?
?? How are we really going to build this system on a nuts-and-bolts level?

We have yet to come across a system that doesn’t need to have these basic
questions answered (especially the first four questions), or one that couldn’t use the
techniques described in this book to help answer them using an iterative,
incremental, opportunistic (when you see the answer, capture it) approach. Although
the full approach presents the steps in a specific order, it’'s not crucial that you follow
the steps in that order. Many a project has died a horrible death because of a heavy,
restrictive, overly prescriptive “cement collar” process, and we are by no means
proponents of this approach. What we are saying is that missing answers to any of
these questions will add a significant amount of risk to a development effort.

Process Fundamentals

We believe that the best way to make process more attractive is to educate as many
people as possible about the benefits of answering the questions we raised earlier,
along with similar questions, and about the risks of failing to answer them. Building
good object models is straightforward if you keep ruthlessly focused on answering
the fundamentally important questions about the system you are building and refuse
to get caught up in superfluous modeling issues. That philosophy lies at the heart of
the ICONIX process.

The people who have to use the process, and management, are both customers of a
software development process. We think of a process as a road map for a team to
follow, a map that identifies a set of landmarks, or milestones, along the way to
producing a quality product.

There are various paths a team can travel, depending on the capabilities and
preferences of its members. But no matter which path they go down, at some point,
they must reach the milestones. At these points in the process, their work becomes
visible to management—during reviews of intermediate results. Passing the
milestones does not guarantee a quality product, but it should greatly improve the
chances.

We believe milestones for an object-oriented process should include, at a minimum,
the following.

?? The team has identified and described all the usage scenarios for the system
it’'s about to build.

?? The team has taken a hard look for reusable abstractions (classes) that
participate in multiple scenarios.

?? The team has thought about the problem domain and has identified classes
that belong to that domain—in other words, the team has thought about
reusability beyond just this system.

?? The team has verified that all functional requirements of the system are
accounted for in the design.

?? The team has thought carefully about how the required system behavior gets
allocated to the identified abstractions, taking into consideration good design



principles such as minimizing coupling, maximizing cohesion, generality, and
sufficiency, and so forth.

Beyond these milestones, there are at least four other fundamental requirements of
a process.

1. It has to be flexible enough to accommodate different styles and kinds of
problems.

2. It has to support the way people really work (including prototyping and
iterative/incremental development).

3. It needs to serve as a guide for less-experienced members of the team,
helping them be as productive as possible without handcuffing more
experienced members.

4. It needs to expose the precode products of a development effort to
management in a reasonably standard and comprehensible form.

The Process in a Nutshell

The basic steps that comprise the full ICONIX process and the associated milestones
are presented in Figures 1-8 to 1-11. Note that the first three of these diagrams will
appear again later in the text, to remind you where we are in the overall process.
(We don’t talk about implementation in this book, but we do have a chapter about
implementation in the original book. Figure 1-11 is here for completeness.)

Figure 1-8. Requirements Analysis

* [dentify vour real-wiorld domam object and the generalization
and wgeregation relationships amivg those objects.

Start drawmg 4 high-level cliss diagram | —

= It feasible, do some mapid prototyping of the proposed
sysigm. Or ghther whatever substantive informatlon —— =

vosi hove abown the legacy system vou ire reenginecring. —_

« ldentify your vse cases, baing use case diggrams, oo o

# Oirpanire the use casesinto proups, Captore this

vrgrnization in o peckage diagram,

+ Allocate functionnl requirements o the wse cases and _H_._._,_,..-r %
domuin abjects at ihis stige ®H""“'--* Q

| Milestone 1> Reguiroments Review




Figure 1-9. Analysis and Preliminary Design

= Write deseniptions of the wse cases— basie courses of agiion

that represent the “mainstream” and alternative courscs

for less-Trequently traveled paths and error conditions.

= Perform robustness anolysis. For each use case:

N o O
Iddentify a first cut of ohigcts that accomplish the O p T

stated soemario. Use the UML Crbjectary ) ':}-Cl

slerealypes.
— Lpadate your domaim-model cliss diagram with
new objects and attributes as you discover them,
= Finish updating the class diagram so that it reflects =

the completion of the analysis phase of the projece

[1T

i‘ Milestane 2: Preliminary Design Review (FOR)

Figure 1-10. Design

» Allocate behavior: For each use case:
Tlentify the messages that need to be passed between abjects,
the abpects, and the assecuted methods 10 be myvoked.

w4 sequence disgram with use case et munning

doow the Tedt sile and design information on the mght. i o 1

Contrivue to update the class diagram with nitributes = | H
pnid operations as vou find them,
I yon wish, show, on o collnbaration diggram,

the key trunsactions between ohjects,

I v wsh, vae o state dingenm to show the real-time belinvior,

+ Finish the static mode] by ndding detailed design =
i formution {For mstance, visibility volues and pattems).
* Verily with your team that your design satisfies S—

all the requirsments you've ideniified.

Milestone 3: Critical Design Review {COR)

Figure 1-11. Implementation




« As needed, produce dingrams, such os deplovment ind companent

dingrims, thar will Belp yvou with the implementation phase.
= Write/gencrate the cle

i I H I 1.1
+ Perform wunit and infegrtion testing - -

+ Perform system and user-acceplanoe testing, using thic uke cases

its blick-box fest cases for the biter,

1 Milestane ilt’lrr-l-'wj'

_—

These diagrams together illustrate three key principles that underlie the process:
inside-out, outside-in, and top-down, all at the same time.

1. Work inward from the user requirements.

AN A
2/ N3

2. Work outward from the key abstractions of the problem domain.
system a system b

/

system c system d

3. Drill down from high-level models to detailed design.

We'’ll reinforce these principles, in one way or another, in each subsequent chapter.
We suggest that if you adopt them at the beginning of a software development
project and stick with them, you will significantly increase your chances of success.

Requirements List for The Internet Bookstore

Starting in the next chapter, we're going to be following a running example, which
we call The Internet Bookstore, through each phase of the process we’ve just
outlined for you. The use cases we’ll be working through, and the classes we’ll
discover, exist to satisfy certain requirements that our client (the owner of the



bookstore we’re going to build) has specified. These requirements include the
following:

?? The bookstore shall accept orders over the Internet.
The bookstore shall maintain a list of accounts for up to 1,000,000 customers.
The bookstore shall provide password protection for all accounts.

The bookstore shall provide the ability to search the master book catalog.

¥ 3 ¥ 3

The bookstore shall provide a number of search methods on that catalog,
including search by author, search by title, search by ISBN number, and
search by keyword.

3

The bookstore shall provide a secure means of allowing customers to pay by
credit card.

?? The bookstore shall provide a secure means of allowing customers to pay via
purchase order.

?? The bookstore shall provide a special kind of account that is preauthorized to
pay via purchase order.

?? The bookstore shall provide electronic links between the Web and database
and the shipping fulfillment system.

?? The bookstore shall provide electronic links between the Web and database
and the inventory management system.

?? The bookstore shall maintain reviews of books, and allow anyone to upload
review comments.

?? The bookstore shall maintain ratings on books, based on customer inputs.



Chapter 2. Domain Modeling

Domain modeling forms the foundation of the static part of our UML model. When we
build a domain model, we start off by trying to identify abstractions in the real
world—that is, the main conceptual objects that are going to participate in this
system. When you design object-oriented software, you try to structure your
software around these real-world, problem space objects. The theory behind this is
that the real world changes less frequently than the software requirements. The
basis for our whole object modeling activity, particularly the static modeling part of
the activity, is a model of these problem domain abstractions.

You may be wondering why this chapter precedes a discussion of use cases in a book
called Applying Use Case Driven Object Modeling. The reason is that when we write
our use cases (see Chapter 3), we’re not going to write them from an abstract, pure
user viewpoint; instead, we’re going to be writing use cases in the context of the
object model. By doing this, we’ll be able to link together the static and dynamic
portions of the model, which is essential if we're going to drive the design forward
from the use cases. The domain model serves as a glossary of terms that writers of
use cases can use in the early stages of that effort.

As we identify real-world, problem domain objects, we also need to identify the
relationships among those objects. These include two particularly important
relationship types: generalization, which is the superclass/subclass relationship,
and aggregation, which is the whole part/subpart kind of relationship. There are
other types of relationships between classes in addition to generalization and
aggregation, including plain vanilla associations between objects, but generalization
and aggregation are particularly important. As the foundation of our static model,
we’'re using UML class diagrams to express our domain model.

UML classes give us a place to capture attributes, which are data elements or data
members, as well as operations, which are the functions that a given object
performs. However, in the initial domain modeling activity, we don’t usually want to
spend too much time capturing attributes and operations—we’ll do this later on as
we refine and flesh out the static part of our model. We want to focus on identifying
objects and the relationships between them as we’re doing the domain modeling.

Reuse is one of the main goals of building your software around these real-world
abstractions, because we often have multiple software systems that share a common
problem domain. Keep in mind that if you’re aiming for reuse, you want to do a very
good job at domain modeling because the reusable aspects of your software are
largely going to come out of this domain modeling activity. This domain model then
becomes the foundation for the static part of your model.

The domain modeling process, for which we’re following the Object Modeling
Technique (OMT) school of thought, is fundamentally an inside-out approach. Inside-
out means that we're starting with the core objects in the system, then working from
the inside outward, to see how those objects are going to participate in the system
we're building. So, the use case approach, or the dynamic part of the model, is an
outside-in approach, whereas the static part of the model is an inside-out approach.
The trick when you’re working both outside-in and inside-out is to make these two
parts meet in the middle and not have a disconnect in between. As we get into
robustness analysis (see Chapter 5) and sequence diagrams (see Chapter 7), we’ll



see exactly how this works. For now, just keep in mind that this domain model and
static modeling activity is really an inside-out look at our system.

Figure 2-1 shows where domain modeling resides within the “big picture” for the
ICONIX process.

Figure 2-1. Domain Modeling and the ICONIX Process

i
| Dynamic
 EE— i . ‘- 1 i
He=| — T 1 |
== =P | S |« = Z| [ !
= Hr=| 'R | Yl ", — 1l !
—— P —— i —f i - S I
GUI Prototype | | tise Cike T |
| Model 2 el Sequence
\ g — ] ‘ Diagram
| S Robustness
! Dlagram —

ol T
5 Hi all
[ =) [:L:‘"“ Eﬂdn|
Ciaan | -
Diagram

The Key Elements of Domain Modeling

The first thing you need to do in building a static model of your system is to find
appropriate classes that accurately represent the real abstractions that the problem
domain presents. If you execute this activity well, you will have not only a solid
foundation on which to build the system but also excellent prospects for reuse by
systems that will be designed and built down the line.

The best sources of domain classes are likely to be the high-level problem
statement, lower-level requirements, and expert knowledge of the problem space. To
get started on the road to discovery, lay out as many relevant statements from these
sources (and others, such as marketing literature) as you can find, and then circle or
highlight all the nouns and noun phrases. Chances are that you will find a large
majority of the important domain objects (classes) this way.

After refining the lists as work progresses, this is what tends to happen:
?? Nouns and noun phrases become objects and attributes.
?? Verbs and verb phrases become operations and associations.

?? Possessive phrases indicate that nouns should be attributes rather than
objects.

The next step is to sift through your list of candidate classes and eliminate the items
that are unnecessary (because they’re redundant or irrelevant) or incorrect (because



they’re too vague, they represent things or concepts outside the scope of the model,
or they represent actions even though they’re phrased as nouns).

While you’re building your class diagram(s), you can also make some initial decisions
about generalization (“kind of” or “is a” relationships among classes). If you need to,
and if you're comfortable doing so at this stage of your project, you can generalize to
more than one level of subclass. Remember to look for “kind of” statements that are
true in the real world. Domain modeling is also the appropriate area for decisions
about aggregations (“part of” or “has” relationships) among classes.

Finally, much like an entity-relationship diagram (ERD), our domain model, updated
to show associations—the static relationships between pairs of classes—should be a
true statement about the problem space, independent of time (that is, static). This
model serves as the foundation of our static class model.

We recommend that you establish a time budget for building your initial domain
model. You’re not going to make it perfect, anyway, so do it quickly and expect to fix
it up as you proceed. You should be vigilant about making necessary adjustments to
your analysis-level class model in response to occurrences during robustness
analysis and throughout the project.

The Top 10 Domain Modeling Errors

The flip side of the principles we just discussed takes the form of a number of
common errors that our students make when they’re doing domain modeling for
their projects. Our “Top 10” list follows.

&% 10%
N 7
__"[‘n.::- llJrl
Start assigning multiplicities to associations right off the bat. Make sure
that every association has an explicit multiplicity.

Some associations on a class diagram represent one-to-one relationships, whereas
others represent one-to-many relationships. These are both called multiplicities.
However, you should avoid dealing with multiplicity altogether during domain
modeling—it chews up time and can be a major cause of analysis paralysis.

4% # 9 L
N 7
LR
WV Do noun and verb analysis so exhaustive that you pass out along the way.

Kurt Derr’'s Applying OMT (SIGS Books, 1995) is a good source of information about
“grammatical inspection.” If you follow Derr’s advice all the way down the line,
though, you’'re likely to find yourself at too a low level of abstraction, in addition to
running the risk of a nervous breakdown. Use the technique to get your object
discovery started, but take care not to get carried away.



ey

_‘T...,- 10_1
Assign operations to classes without exploring use cases and sequence
diagrams.

We advocate a minimalist approach to defining operations during domain modeling.
In fact, we're going to tell you that you shouldn’t assign any operations to classes
during domain modeling. That’s because there isn’t enough information available
with which to make good design decisions about operations at that stage of a
project. When we get to interaction modeling, however, we do have good
information (at least we hope to). We describe interaction modeling in Chapter 7.

i+ # l.:lr -
N/
__n.p m__
Optimize your code for reusability before making sure you've satisfied the
user’s requirements.

The more general your objects and classes, the higher the probability that you’ll be
able to reuse those objects and classes for other projects. And a complete class is
one that is theoretically reusable in any number of contexts. However, to achieve
reusability and completeness, you need to consider both attributes and operations,
and we just told you why you shouldn’t be assigning operations to classes during
domain modeling, so it’'s not wise to overdo your efforts to make classes reusable
when you’re doing high-level class diagrams. Move quickly through domain
modeling, so you have time to make sure that you’re building what your customers
want.

¢ # B
N 4
__"[‘\'.::- llJrl
A4 Debate whether to use aggregation or composition for each of your “part-
of” associations.

Grady Booch’s original descriptions of “has by reference” relationships morphed into
aggregation within the UML. Similarly, “has by value” became a “strong” form of
aggregation called composition within which a “piece” class is “owned by” a parent
class: if the parent is deleted, all instances of the child get deleted automatically.
Trying to differentiate between these two during a domain modeling effort is a
surefire way to do some serious tail-chasing. We prefer to use simple aggregation
during domain modeling. Aggregation versus composition is a detailed design issue.

¢ # 5
N~ d
- _-T\Lp lﬂ—_
A4 Presume a specific implementation strategy without modeling the problem
space.

As part of ongoing refinement of your domain model, you should remove anything
that clearly states an action rather than a dependency or that’s specifically related to



implementation. What you should not do is start introducing things on your high-
level class diagrams that represent commitments to specific technologies, such as a
relational database or a particular kind of server. Leave implementation issues to
implementation; model the problem domain first.

& # 4%
N/
__"I'a'.u- 1l2lr
A4 Use hard-to-understand names for your classes, like cPortMgrintf, instead
of intuitively obvious ones, like PortfolioManager.

One good reason to do domain modeling up front is to facilitate the task of getting
everyone on the project team to agree on what your key abstractions should be
called. The more obvious the class names, the easier that task will be. Save
acronyms and other kinds of abbreviations (if you insist on having them) for
implementation.

P T T
N S
[ Tep 107

Jump directly to implementation constructs, such as friend relationships
and parameterized classes.

The UML offers a lot of opportunities to add what we call “Booch stuff” to class
diagrams. This includes constructs that came across more or less directly from C++,
such as parameterized classes and friend relationships. These are much more
relevant to the solution space than to the problem space, though, and the focus of
domain modeling should definitely be the problem space.

% 200
h—
__T:p _Jl:l__
Create a one-for-one mapping between domain classes and relational
database tables.

If you’re reengineering a legacy system that uses a relational database, the tables
within that database are likely to be an excellent source of names for your domain
classes. However, be careful not to just bring them over to your static model
wholesale. A relational table can have a lot of attributes that might not belong
together in the context of an object model. You should try to use aggregation to
factor groups of attributes into “helper” classes, which contain attributes and
operations that can be grouped into smaller “piece-part” classes.

Py
[ Top 10 ]
role="titleicon" A4 Perform “premature patternization,” which involves
building cool solutions, from patterns, that have little or no connection to user
problems.



Patterns often start becoming visible during robustness analysis. As we’ll explore in
Chapter 5, there are two strategies, “control in the screen” and “use case controller,”
that lend themselves to discovering patterns connected to use cases. Looking ahead,
design patterns can be highly useful in the context of sequence diagrams and
design-level class diagrams. Domain modeling is not the time to start thinking in
terms of patterns.

Exercises

The following exercises, taken from the domain model for our Internet Bookstore,
are designed to test your ability to spot the top 10 mistakes that people make during
domain modeling. (The full domain model is presented at the end of the chapter and
also in Appendix.) Each page with a red label at the top contains three or four of
these mistakes; your task is to write corrections on the page near the erroneous
material. Following each of these pages is a page with a white label inside a black
box at the top; this page contains corrected material and explanations of the top 10
rules that were violated on the previous page. Happy hunting!

Exercise 1
oo $oo
- -
Book
Catalog | [ cBinaryTree cLoginkgr
f,} | v\aﬂm'F'anamm:J-
/ User
i L
Book Order " Hood

Accoun User Preferances |
Exercise 1
| Catalog |
[ User |
T [ omer | g

Aol User Prelarancas II
il

On the previous diagram:

?? The cBinaryTree class is a parameterized class (also known as a template
class within the UML). There’s no good reason to start defining an
implementation construct such as a binary tree at this stage of modeling.



?? The cLoginMgr class has an operation named verifyPassword. It’'s too early to
make decisions about which operations go on which classes, and besides,
chances are good that the operation belongs on the Account class anyway.

?? The name of the class we just discussed was not intuitively obvious.

Exercise 2
'\IL .
ol o2
L =g
| cSessionBeanShpngCan Login Manages
L::_ ‘. : ) -Umr ......
L2 7
-
Catalog Ham . E...E_D_';i ....... qj ::u_r ........................ .i
, | |
,-:' 4 . | R e |
“ Ordor
e
Exercise 2

gmppmg c;ﬂ . Logn Ma v

# User

| e .
Culzlng; : fcroun [ User Preforences |

. J | 1
5 L 1

On the previous diagram:

?? The name of the cSessionBeanShpngCart class indicated that the modeler
decided to represent the concept of a shopping cart using a session Enterprise
Java Bean (EJB). Robustness analysis, which we’ll discuss in Chapter 5, is the
appropriate stage to start exploring how to map classes to things such as
beans.

?? A class that represents a shopping cart should be called Shopping Cart.

?? The class we've been discussing had a composition relationship with the Order
class. The modeler committed to the idea that an Order disappears when the
shopping cart object to which it belongs is destroyed. This may or not make
sense in the long run, but it’s certainly too soon to be thinking along those
lines.

Exercise 3



==gntity>>
Book Order
[} 1.3
¥ 10 dE‘I:BPlECEd . e
| 2L | dateShipped { Billing Info
u recipient R
tem ., trackingNumber
~ | status @
shippingMethod | wemts
foreigninventoryDBKey |V
e changeStatus() !_
“| retrieveShippingMethod)
retrieveDetails()
Status - i Shipping Method |
|
.-""‘v"'-'. L
Exercise 3
Account
‘ P Order Table | O

o

Shipping Method

On the previous diagram:

?? The presence of the foreignlnventoryDBKey attribute indicates that the
modeler is looking ahead toward a relational database. (Note also that classes
in your domain model shouldn’t have attributes yet, and they certainly
shouldn’t have operations.)

?? The Order class has operations assigned to it.

?? The association between Account and Billing Info has a multiplicity.

Exercise 4



Purchase Order

' datePlaced @ Ordar
| status g —r—

' En |
fom A
Book o o | -
| ! W
title oy .

price Proxy Order | Real Order
publishedDate

‘thumhnﬂil e TR LD L o ki
quantityOnHand &

raplenishThreshold St
discountPct

publisher

Exercise 4

Purchase Order

PriceSchedule

Publisher . Stock
|
|

On the previous diagram:

?? The presence of attributes named “price,” “quantityOnHand,” and “publisher,”
all of which probably belong in associated classes, indicates that the modeler
is likely to have mapped an existing Order table directly to the Order class.
(Also, as we mentioned for Exercise 3, classes in your domain model
shouldn’t have attributes yet.)

?? The Purchase Order class uses the Vector construct from Java.



?? The modeler has chosen to use the Proxy design pattern; domain modeling is
too early to be making this decision.

Exercise 5
Shopping Cart
ve)y /S @
WV .
<<E@rVEr=>
o Order
."“r:f
Book
=<gliant=>
Candidate Order
Raview
Yried) is
7 % %
Editorial Review Customer Review .
rata() m

Exercise 5



Shopping Car

Item

Candidate Order

| Editorial Review

On the previous diagram:
?? The Customer Review class has an operation.

?? The association between Item and Shopping Cart is a composition, but it's too
early to know whether this makes sense as opposed to an ordinary
aggregation.

?? The stereotypes on the Order and Candidate Order classes indicate a
premature decision as to the layers to which the classes belong.

Bringing the Pieces Together

Figure 2-2 shows the full domain model for our Internet Bookstore. This diagram
consolidates the fragments presented within the exercises and adds classes and
associations that come into play later in this workbook.

Figure 2-2. Domain Model for The Internet Bookstore



- '-rm-l:':-:i o



Chapter 3. Use Case Modeling

This chapter addresses a fundamental question that every development effort must
ask: What are the users of the system trying to do? We’re going to focus our efforts
on trying to capture our users’ actions, and the associated system responses, in
great detail because the software behavior is dictated by the user requirements. In
other words, what we need the software to do depends on how the users are
accessing it and what the users are trying to do. This often relates to screens and
user interfaces.

Figure 3-1 shows where use case modeling resides within the “big picture” for the
ICONIX process. As you can see, we think it's a good idea to use prototypes to help
define the use cases. And, we do our use case model, along with our domain model,
right at the very beginning of our project. The entire dynamic part of the object
model is directly driven from the use case model we put together. Since the dynamic
model drives the static model, the use cases are also driving our static model, as
well.

Figure 3-1. The ICONIX Process Is Use Case Driven

Aobustness "‘
Eriagram
Static ..

ol o
Figure 3-1 also shows that we’re continuously updating and refining our static model
based on further analysis of these use cases as we do our robustness and sequence
diagrams. We’'re constantly updating our static model as we walk through the
scenarios. That's how it evolves from the first-cut domain model to our detailed
design-level static model. We’re completely use case driven in this approach, in that
our software architecture and our software design are both driven from our analysis
of usage scenarios.

The whole dynamic model is very much an outside-in type of approach. We start with
users who are outside our system, and we work our way in to expose all details of
the software behavior. From that, the software structure that supports that behavior
is created. But we’'re working inward from the outside of the system, one scenario at
a time. Because the use cases are the fundamental unit of decomposition in this



modeling effort, everything else is directly driven from this outside-in approach. As a
result, we're reliably able to design systems that meet our user requirements, which
is no small accomplishment.

The Key Elements of Use Case Modeling

The task of building use cases for your new system is based on identifying as many
as you can up front and then establishing a continuous loop of writing and refining
the text that describes them. Along the way, you will discover new use cases and
also factor out commonality in usage.

You should keep one overriding principle in mind at all times in your effort to identify
use cases: They should have strong correlations with material in the user manual for
the system. It should be obvious what the connection is between each use case and
a distinct section of your user guide. This reinforces the fundamental notion that you
are conforming the design of your system to the viewpoints of the users. It also
provides a convenient summary of what “use case driven” means: Write the user
manual, then write the code. If you're reengineering a legacy system, you can simply
work from the user manual backward, making any necessary changes as you go.

Once you have some text in place for a use case, it’s time to refine it by making sure
the sentences are clear and discrete, the basic format of your text is noun-verb-
noun, and the actors and potential domain objects are easily identifiable. You should
also update your domain model (see Chapter 2) as you discover new objects and
expand your understanding of the objects you’d previously found. And, it's very
important to think of all possible alternate courses of action for each use case
wherever possible, which should be a large majority of the time. Note that
robustness analysis (see Chapter 5) will be very helpful toward accomplishing all of
this refinement.

Although some authors encourage the use of voluminous use case templates, here’s
what we recommend to every one of our clients:

1. Create a use case template that has areas labeled Basic Course and
Alternative Courses. Don’t put anything else in there; it'll just distract you.

2. Ask “What happens?” This will get the basic course of action started.

3. Ask “And then what happens?” Keep asking that question until you have all
the details of your basic course on paper.

4. Ask, “What else can happen?” Be relentless. Are there any other things that
can happen? Are you sure? Keep asking those questions until you have a rich
set of alternative courses written down. Trust us: Grief at this point is much
easier to take than grief during, say, integration testing.

The goal is not to construct an elegant use case model; the goal is to account for
everything the user might do.

You’'ll review this material during a requirements review (see Chapter 4); you'll
review it again during a preliminary design review (see Chapter 6); and you’ll review
it once more during a critical design review (see Chapter 8). This may seem
excessive, but keep in mind that the more well-defined the system behavior, the
easier it’s going to be to build the system.



You can use several mechanisms to factor out common usage, such as error
handling, from sets of use cases. This is usually a good thing to do because breaking
usage down to atomic levels will make your analysis effort easier and save you a lot
of time when you’re drawing sequence diagrams. Whether you use the UML’s use
case generalization and include and extend relationships, or the invoke and precede
relationships from the Open Modeling Language (OML), which we recommend in Use
Case Driven Object Modeling with UML, your goal should be a set of small, precise,
reusable use cases.

We recommend grouping use cases into packages, primarily because these packages
form logical boundaries for dividing work among subteams. A good rule to follow is:
Each package should correspond with a chapter, or at least a major section, in your
user manual.

You should feel comfortable proceeding to the next phases of the development
process when you’ve achieved the following goals of use case modeling:

?? You’'ve built use cases that together account for all of the desired functionality
of the system.

?? You've produced clear and concise written descriptions of the basic course of
action, along with appropriate alternative courses of action, for each use case.

?? You've factored out scenarios common to more than one use case, using
whichever constructs you’re most comfortable using.

The Top 10 Use Case Modeling Errors

The flip side of the principles we just discussed takes the form of a number of
common errors that we have seen students make when they’re doing use case
modeling on their projects for the first time. Our “Top 10” list follows.

% 10
\\ /
Tep 10
Write functional requirements instead of usage scenario text.

Requirements are generally stated in terms of what the system shall do. Usage
scenarios describe actions that the users are taking and the responses that the
system generates. Eventually, we're going to use our use case text as a runtime
behavioral spec for the scenario we’re describing, and this text will sit on the left
margin of a sequence diagram. We want to be able to easily see how the system
(shown with objects and messages) is implementing the desired behavior, as
described in the use case text. So, we need to keep a clear distinction between
(active voice) usage descriptions (behavior) and (passive voice) system
requirements.

G2y

~ Tep 10
- F‘I
A4 Describe attributes and methods rather than usage.



Not only shouldn’t your use case text include too many presentation details, but it
should be relatively free of details about the fields on your screens, as well. Field
names often match up directly with the names of attributes on your domain classes,
which we talked about in Chapter 2. If you find yourself starting to list the names of,
say, 13 fields from the screen in your use case text, stop. Open the domain model,
find the class(es) where those attributes belong, and capture them where they’ll do
you some good—as attributes. Later, when you need them, they’ll be there. Methods
shouldn’t be named or described in case text because they represent how the system
will do things, as opposed to what the system will do.

Lof R
\\ rd
_‘Tn.p 1'3'_1
Write the use cases too tersely.

When it comes to writing text for use cases, expansive is preferable to terse. You're
going to need to address all of the details of user actions and system responses as
you move into robustness analysis and interaction modeling, so you might as well
put some of those details in your use cases up front. Remember also that your use
cases will serve as the foundation for your user manual, and it's always better to err
on the side of too much detail rather than not enough when it comes to user
documentation.

& #70
N/
_"[‘\'.::- ll.'!r
Divorce yourself completely from the user interface.

One of the fundamental notions of “use case driven” is that the development team
conforms the design of the system to the viewpoints of the users. You can’t do this
without being specific as to what actions the users will be performing on your
screens. As we mentioned for item 9, you don’t need to talk about fields in your use
case text, and you also don’t want to go into any detail about the cosmetic
appearance of your screens; you can let your prototypes, in whatever form they
take, do that work for you. You do, however, need to discuss those features of the
user interface that allow the user to tell the system to do something.

F.y # 6 FS
\ n.pm/

W Avoid explicit names for your boundary objects.

Boundary objects are the objects with which actors will be interacting. These
frequently include windows, screens, dialogs, and menus. In keeping with our
themes of including ample detail and being explicit about user navigation, we submit
that it’'s necessary to name your boundary objects explicitly in your use case text.
Another reason that it's important to do this is that you’re going to explore the
behavior of these objects during robustness analysis (see Chapter 5), and it can only
help reduce ambiguity and confusion to name them early.



¢ $ 5
\' Top 10

Write using a perspective other than the user’s, in passive voice.

A use case is most effectively stated from the perspective of the user as a set of
present-tense verb phrases in active voice. The tendency of engineers to use passive
voice is well-established, but use cases should state the actions that the user
performs, and the system’s responses to those actions, and this kind of text is only
effective when it’'s stated in active voice.

c\ # 4 /
_'_"n.p 1ur'
Describe only user interactions; ignore system responses.

The narrative of a use case should be event-response oriented, as in, “The system
does this when the user does that.” The use case should capture a good deal of what
happens “under the covers” in response to what the actor is doing, such as creating
new objects, validating user input, or generating error messages. Remember that
your use case text describes both sides of the dialog between the user and the
system, and that all of the software behavior that you’re trying to discover happens
on the system side of that dialog. If you leave out the system responses, you ignore
the software behavior.

# 3
\. /
[ Top 10

Omit text for alternative courses of action.

Basic courses of action are generally easier to identify and write text for. That
doesn’t mean, however, that you should put off dealing with alternative courses
until, say, detailed design. In fact, it's been our experience that when important
alternative courses of action are not uncovered until coding and debugging, the
programmer responsible for writing or fixing the code tends to treat them in ways
that are most convenient for him or her. Needless to say, this isn’'t healthy for a
project.

% 200
h—
__T:p _Jl:l__
Focus on something other than what’s “inside” a use case, such as how
you get there or what happens afterward.

Several prominent authors advocate the use of long, complicated use case
templates. Spaces for preconditions and postconditions are generally present on
these templates. We like to think of this as the 1040 “long form” approach to use
case modeling, in comparison to the 1040EZ-like template that we advocate (two
headings: Basic Course and Alternate Course). You shouldn’t insist on using long and
complex use case templates just because they appeared in a book or article. Don’t
waste your time.



{01
N 7
__T:p _Jl:l__
A4 Spend a month deciding whether to use includes or extends.

In our years of teaching use case driven development, we have yet to come across a
situation in which we’ve needed more than one mechanism for factoring out
commonality. Whether you use the UML’s include construct, or the OML’s invoke and
precede mechanisms, or something else that you’re comfortable with, doesn’t
matter; what matters is that you pick one way of doing things and stick with it.
Having two similar constructs is worse than having only one. It’s too easy to get
confused—and bogged down—when you try to use both. Don’t spin your wheels.

Exercises

The following exercises, taken from the use case model for our Internet Bookstore,
are designed to test your ability to spot the top 10 mistakes that people make during
use case modeling. (The full use case model is presented in Appendix.) Each page
with a red label at the top contains three or four of these mistakes; your task is to
write corrections on the page near the erroneous material. Following each of these
pages is a page with a white label inside a black box at the top; this page contains
corrected material (in italics) and explanations of the top 10 rules that were violated
on the previous page. Happy hunting!

Exercise 1

[from Open Account]
Sl

E -rvl'

Basic Course: The Customer enters the required information. The system validates
the information and creates a new Account object.

Alternate Course: If any data is invalid, the system displays an appropriate error
message.

[from Search by Author]
o
=L

The user submits the request. The system displays another page that contains the
search results.

[from Log In]



The Customer enters his or her user ID and password, and then clicks the Log In
button. The system returns the Customer to the Home Page.

Exercise 1

Basic Course: The Customer types his or her name, an email address, and a
password (twice), and then presses the Create Account button. The system ensures
that the Customer has provided valid data, and then creates an Account object using
that data. Then the system returns the Customer to the Home Page.

Alternate Courses:

?? If the Customer did not provide a name, the system displays an error
message to that effect and prompts the Customer to type a name.

?? If the Customer provided an email address that’s not in the correct form, the
system displays an error message to that effect and prompts the Customer to
type a different address.

?? If the Customer provided a password that is too short, the system displays an
error message to that effect and prompts the Customer to type a longer
password.

?? If the Customer did not type the same password twice, the system displays
an error message to that effect and prompts the Customer to type the
password correctly the second time.

The Customer types the name of an Author on the Search Page, and then presses
the Search button. The system...retrieves all of the Books with which that Author is
associated....Then the system displays the list of Books on the Search Results Page.

Basic Course: The Customer enters his or her user ID and password, and then clicks
the Log In button. The system validates the login information against the persistent
Account data, and then returns the Customer to the Home Page.

Alternate Course: If the system cannot find the specified userlD,
On the previous page:

?? The first use case is too terse. There’s no reference to what kind of
information the Customer is entering, nor to the page he or she is looking at.
The text doesn’t explain what’s involved in the validation of the data the
Customer entered. And the use case doesn’t describe how the Customer
needs to respond to an error condition.

?? The second use case fragment doesn’t contain explicit names for the relevant
boundary objects.

?? The third use case fragment is lacking alternate courses, even though it
should be fairly obvious from the context that some validation needs to occur
and that there are several possible error conditions.

Exercise 2

[from Log In]



2 -.‘..;:/".

Name: Log In

Goal: To log a customer into the system.

Precondition: The Customer is not already logged into the system.

Basic Course: The Customer enters his or her user ID and password, and then
clicks the Log In button....

Alternate Courses: ...
Postcondition: The Customer is logged into the system.

[from Edit Contents of Shopping Cart]

\\.
w # 4 &
N

.-v.'.

On the Shopping Cart Page, the Customer modifies the quantity of an Item in the
Shopping Cart, and then presses the Update button. Then the Customer presses the
Continue Shopping button.

[from Cancel Order]

Basic Course: The system displays the relevant information for the Order on the
Cancel Order Page, including its contents and the shipping address. The Customer
presses the Confirm Cancel button...

Exercise 2

Basic Course: The Customer enters his or her user ID and password, and then
clicks the Log In button....

On the Shopping Cart Page, the Customer modifies the quantity of an Item in the
Shopping Cart, and then presses the Update button. The system stores the new
quantity, and then computes and displays the new cost for that Item....

Basic Course: The system ensures that the Order is cancellable (in other words,
that its status isn’t “shipping” or “shipped”). Then the system displays the relevant
information for the Order on the Cancel Order Page, including its contents and the
shipping address. The Customer presses the Confirm Cancel button. The system
marks the Order status as “deleted,” and then invokes the Return Items to Inventory
use case.

Alternate Course: If the status of the Order is “shipping” or “shipped,” the system
displays a message indicating that it's too late for the Customer to cancel the order.



On the previous page:

?? The first use case fragment shows how useless it can be to be obsessive
about using a complicated use case template. The name of the use case
expresses the goal clearly enough; the content of the basic course will make
the stated precondition and postcondition quite redundant.

?? The second use case fragment doesn’t specify what the system does in
response to the Customer pressing the Update button, including possibly
deleting an Item.

?? The third use case fragment doesn’t allow for the possibility that the Order
might have a status that prevents it from being cancelled.

Exercise 3

[from Search by Author]

O
St
St

The Customer types the name of an Author, and then submits a search request....The
system retrieves the important details about each Book, and then displays the list of
Books.

[from Edit Contents of Shopping Cart]

O

: 1-‘"':-‘}'. 4

Basic Course: If the Customer modifies the quantity of an Item in the Shopping
Cart, and then presses the Update button, the system will store the new quantity,
and then compute and display the new cost for that Item....

Alternate Course: The system will delete an Item from the Shopping Cart if the
quantity of that Item in that Shopping Cart becomes O.

[from Process Received Shipment]

A\
Sio/7
- -ﬁ\“:/'-'."

The Receiving Clerk ensures that the Line Items listed on the Purchase Order match
the physical items. The Clerk waves the bar code on the packing slip under the
sensor at the receiving station. The system executes a “change order status” method
to change the Order status to “fulfilled,”and then calls the changeQuantityOnHand
method for each of the variousBooks. The Clerk hands the Books off to the Inventory
Clerk.

Exercise 3



The Customer types the name of an Author on the Search Page, and then presses
the Search button....The system retrieves the important details about each
Book....Then the system displays the list of Books on the Search Results Page....

Basic Course: On the Shopping Cart Page, the Customer modifies the quantity of an
Item in the Shopping Cart, and then presses the Update button. The system stores
the new quantity, and then computes and displays the new cost for that Item....

Alternate Course: If the Customer changes the quantity of the Item to 0, the
system deletes that Item from the Shopping Cart.

The Receiving Clerk ensures that the Line Items listed on the Purchase Order match
the physical items. The Clerk waves the bar code on the packing slip under the
sensor at the receiving station. The system changes the status of the Purchase Order
to “fulfilled” and updates the quantity on hand values for the various Books. The
Clerk hands the Books off to the Inventory Clerk.

On the previous page:
?? The first use case fragment doesn’t name the boundary object.

?? The second use case fragment reads more like part of a requirements spec
than a use case.

?? The third use case fragment refers to two methods.
Exercise 4

[from Check Out]

",
i d\o
St
The Customer selects a billing method and presses the Use This Billing Information
button. Then the Customer presses the Confirm Order button. The use case ends.

[from Ship Order]

The Clerk waves the bar code on the packing slip under the sensor at the shipping
station. The system changes the status of the Order to “shipping.” Then the system
retrieves the Shipping Method that the Customer specified for this Order, and
displays it on the Shipping Station Console....

[from Track Recent Orders]

A\
S/

. -.v'.-'-

The Customer clicks on a link. The system retrieves and displays the Contents of the
Order, in view-only mode, on the Order Details Page. This display shows the relevant



values of the Order object at the top of the page and the Item details, including the
basics about each Book that the Customer ordered (but not the thumbnails), below
that. The Customer presses OK to return to the Order Tracking Page.

Exercise 4

The Customer selects a billing method and presses the Use This Billing Information
button. The system associates the given Billing Info object with the Candidate Order.
Then the system displays the Confirm Order Page.

The Customer presses the Confirm Order button. The system converts the Candidate
Order to an Order and destroys the Shopping Cart. Then the system returns control
to the use case from which this use case received control.

Basic Course: The Shipping Clerk ensures that the Items listed on the packing slip
for the Order match the physical items. The Clerk waves the bar code on the packing
slip under the sensor at the shipping station. The system changes the status of the
Order to “shipping.” Then the system retrieves the Shipping Method that the
Customer specified for this Order, and displays it on the Shipping Station Console....

Alternate Course: If the Shipping Clerk finds a mismatch between the Order and
the physical items, the Clerk stops processing of the Order until he or she is able to
make a match.

The Customer clicks on a link. The system retrieves and displays the contents of the
Order, in view-only mode, on the Order Details Page. [note missing text] The
Customer presses OK to return to the Order Tracking Page.

On the previous page:

?? The first use case fragment doesn’t describe what happens when the
Customer presses the Use This Billing Information button or when he or she
presses Confirm Order.

?? The second use case fragment doesn’t allow for the possibility that the set of
Items that the Shipping Clerk has in front of him or her doesn’t match what'’s
on the packing slip.

?? The third use case contains too many details about what the Order Details
page will look like.

Exercise 5
[from Ship Order]
e

- -rvn'

The Clerk finishes packaging the Order, and records the tracking number, and then
sends the package out via the associated Shipper.

[from Track Recent Orders]



2 -.'\:/.

The system retrieves and displays the Orders that the Customer has Placed within

the last 30 days....The Customer requests details for an Order. The system retrieves
and displays the contents of the Order, in view-only mode. The Customer returns to
the list of Orders when he or she is finished looking at the details of the given Order.

[from Browse List of Books]

A\
Sio/7
- -ﬁ\“:/'-'."

The Customer clicks on a Category on the Browse Books Page. The System invokes
the “displayYourSubcategories” method on the Category object. This process
continues until there are no more subcategories, at which point the system displays
the Books in the lowest subcategory.

Exercise 5

The Clerk weighs the set of physical items. The Clerk packages the Items. The Clerk
attaches a manifest appropriate for the given shipping method. The Clerk waves the
bar code on the manifest under the sensor. The system records the tracking number
from the bar code for the given Order. The Clerk sends the package out via the
associated Shipper.

The system retrieves the Orders that the Customer has placed within the last 30
days, and displays these Orders on the Order Tracking Page. Each entry has the
Order ID (in the form of a link),...The Customer clicks on a link. The system retrieves
and displays the contents of the Order, in view-only mode, on the Order Details
Page. The Customer presses OK to return to the Order Tracking Page.

The Customer clicks on a Category on the Browse Books Page. The system displays
the subcategories within that Category. This process continues until there are no
more subcategories, at which point the system displays the Books in the lowest
subcategory.

On the previous page:

?? The first use case fragment doesn’t specify how the Shipping Clerk records
the tracking number and thus how it gets associated with the given Order.

?? The second use case fragment omits several details about where the list of
Orders and the Order details appear and how the Customer navigates
between these.

?? The third use case fragment describes what happens in terms of a method
rather than from the actor’s standpoint.

Bringing the Pieces Together



Figure 3-2 shows the full use case diagram for our Internet Bookstore. This diagram
shows the use cases that provide the fragments presented within the exercises,
along with the actors involved in those use cases.

Figure 3-2. Use Case Diagram for The Internet Bookstore

i

Edi Contants of Shopping Cart

SERR ! - Shipgiirg Chark

" ganech bry Author _ Shipping Statica

HmanLﬁInrﬁm_ Duunnm o= 'l:'/d_'\) I‘H,.---l-—->

& Track Aacent Crers
- : e Stip Ordar

'Q Shippar
Caneal Crder S
),
’,'-'—'_‘—'-.} W
— Cpen Accoun
Check, Cut
Recaiving Clark Pruceda Pacehud Ehiwme irvriny Clark

Recalving Staton



Chapter 4. Requirements Review

Requirements review involves trying to ensure that the use cases and the domain
model work together to address the customers’ functional requirements. It also
involves making sure that the customers have enough of an idea of what they want
that our development team is able to base a design on those requirements. Some
schools of thought hold that “customers never know what they want... the
requirements change weekly, sometimes daily, even hourly,” and use this to justify
skipping analysis and design. This is an enormous cop-out. It’s the analyst’s job to
help the customers focus their understanding of their requirements. Use cases,
prototypes, and domain models are among the tools we can use to make this
process work.

Figure 4-1 shows where we are.

Figure 4-1. Requirements Review and the ICONIX Process

 dentily yvoor real=world domamn objects and the peneralization
and aggregation relationships among those ohjects

Stirt domwing o high-level elass diagrum,

« If'it's feasible, do some mpid prototyping of the proposed y —a]

system, Ur gniherwhatever substantive informstion

vl have aboutl the lepacy Svslem viou are reengindering.

« ldentify your use cases, using use case diagrams

——
s Drpanize the use eases into proups, Caplure this
organzation in jp packape dingram
= Adlocae functional requirements 1o the wse cases and o
T
domain objects uwt this stage. @-—-.HH E
; . , == T
1 Mifestone 10 Reguirements Review == ]
= 1
== =g _Fe

The Key Elements of Requirements Review

Requirements review must involve representatives of both the customer(s) and the
development team, as well as any necessary managers. The goal is to achieve basic
agreement among all parties that the use cases, together with the domain model and
whatever prototype elements are in place, capture the functional requirements of the
system. This works best when everyone is in a room together, with a
facilitator/moderator who keeps the conversations on track and a scribe who records
the results and the action items. The key word is traceability: it should be clear how



each requirement traces into one or more use cases, and how one or more classes
from the domain model and one or more elements of the prototype work together
with those use cases to address the requirement.

One of the fundamental questions that every development effort must ask is this:
What are the real-world objects we need to model, and how do they relate to each
other? Within the ICONIX process, domain modeling forms the foundation of the
static part of our UML model. When we build a domain model, we start by trying to
identify abstractions in the real world—that is, the main conceptual objects that are
going to participate in this system.

When you design object-oriented software, you try to structure your software around
these real-world, problem space objects because the real world changes less
frequently than the software requirements. The basis for our whole object modeling
activity, particularly the static modeling part of the activity, is a model of these
problem domain abstractions. You're going to evolve the initial class diagrams that
show the domain model to the point where you can code from them, so it’s critical
that you capture the key abstractions early and effectively.

Another of those fundamental questions for a development effort is this: What are
the users of the system trying to do? During use case modeling, and, by extension,
requirements review, we’re going to focus our efforts on trying to nail down our
users’ behavior in great detail, because the software behavior is dictated by the user
requirements. In other words, what we need the software to do depends on how the
users are accessing it and what the users are trying to do. Keep in mind that the
more well-defined the system behavior, the easier it’s going to be to build the
system.

As you can see from Figure 1-1, we think it’s a good idea to use prototypes to help
define the use cases. We encourage our clients to use rapid prototyping as frequently
as possible. The idea is that developers and users sit down together and build
something that will demonstrate “proof of concept.” However—and this is the big
“however” that separates us from the eXtreme Programming (XP) community—don’t
mistake your proof of concept prototype for deliverable, shippable software—even if
you’ve run some unit tests 300 or so times—unless you're fond of your users
pressing Ctrl-Alt-Delete when confronted with the “blue screen of death.”

Proof of concept prototypes are built with the goal of rapid delivery at the expense of
robust, “bulletproof” design. When you’re trying to demonstrate proof of concept,
you’'re trying to get something that looks cosmetically close to what your users might
be seeing built, as fast as you possibly can. So, you're likely to “do the simplest thing
that can possibly work,” to borrow a catchy slogan. It’s like bringing in a construction
crew to put up a movie set: They can build a “house” (actually a facade of a house)
that looks fantastic from the outside, in just a small fraction of the time it takes to
build a real house, but imagine trying to refactor this movie facade into a real house.
For a real house, you need blueprints, electrical schematics, and plans for the
plumbing. Always keep in mind that your proof of concept prototypes are just like
movie set facade houses. What do you do if you have pointy-haired management
that can’t tell the difference? It’s simple. Don’t build your prototypes in code. Just
work with pencil and paper line drawings. Some of our clients use an abstraction of
the GUI called an interaction flow diagram very effectively for this purpose. This is
essentially a large sheet of paper that shows small line drawings of the screens and
the options for navigating among them.



Taking this idea one step further, we’ve found that exploring the graphical user
interface (GUI) design in parallel with the required system behavior is generally an
excellent approach. This involves iterating, with the users, the presentation aspects
of the system, and after achieving closure on a couple of screens, writing the
associated use cases. This bouncing back and forth can be very effective in the right
environment. You should extend this thinking to your requirements review: the text
for a given use case should match up well with the associated GUI element(s), in
terms of the use case’s descriptions of the basic nature of those elements and the
system’s responses to actions that the actor performs.

Some prominent people in the object-oriented (O0O) community advocate the
opposite: They insist that you shouldn’t talk about GUI specifics in your use case
text. They also insist that you shouldn’t talk about much of anything specific, that
you should leave your text as abstract (or teleocentric, which means goal-oriented)
as possible. (“Teleocentric” is our favorite new vocabulary word.) We believe that
you can’t drive an abstract use case down through code nearly as effectively as you
can drive a specific use case. You shouldn’t talk about whether this field contains a
set of radio buttons, or that window has both vertical and horizontal scroll bars in
your use cases, but you should definitely talk about the “call and response,” of actor
and system, respectively, and you should name the objects that come into play, as
well. Doing this is the best way to ensure a high level of traceability of your use
cases into your analysis and design.

You should also do a grammar check on your use text during requirements review. A
use case is most effectively stated from the perspective of the user as a set of
present-tense verb phrases in active voice. The tendency of engineers to use passive
voice is well-established (know anybody who writes like this: “The engineer shall use
passive voice to articulate all possible behavioral options that may be presented by
the system.”?). However, as we just said, use cases should state the actions that the
user performs and the system’s responses to those actions, and this kind of text is
only effective when it's stated in active voice.

Another critical aspect of use case modeling involves alternate courses of action. As
we explained in Chapter 3, it's very important to think of all possible alternate
courses of action for each use case wherever possible, which should be a large
majority of the time, by asking, “What else can happen? Are there any other things
that can happen? Are you sure?”

As we described in Chapter 3, you should also stay away from long, complicated use
case templates that have spaces for the likes of preconditions and postconditions
along with many other things that tend to be redundant at best and annoying at
worst.

The Top 10 Requirements Review Errors

The flip side of the principles we just discussed takes the form of a number of
common errors that our students make when they’re doing requirements review for
their projects. Our “Top 10” list follows.



S8 10
N 4
__"n.p mJ
Don’t review requirements at all. Instead, invite “feature-itis” by letting
the coders build whatever they want.

One of the fundamental tenets of XP is that since requirements change every day, it
doesn’t make much sense to try to deal with them explicitly. People who follow this
approach, or something similar, lose not only traceability of requirements but also
the ability to build trust between customers and developers that can only result from
intensive face-to-face negotiation. The likely outcome is that coders build a cool
system that doesn’t have a whole lot to do with what the customers think they’re
paying for.

The XP folks even have cool slogans to describe this phenomenon. Kent Beck used it
to diagnose the failure of the C3 project (XP’s big claim to fame) on their Wiki
Website: “...the fundamental problem was [that] the Gold Owner and Goal Donor
weren’'t the same. The customer feeding stories to the team didn’t care about the
same things as the managers evaluating the team’s performance....The new
customers who came on wanted tweaks to the existing system more than they
wanted to turn off the next mainframe payroll system. IT management wanted to
turn off the next mainframe payroll system.” Translating: In XP lingo, the Goal Donor
is the customer representative who sits in the room with the coders, who explain
that it's okay to change requirements in midstream, while the Gold Owner is the
project sponsor—the one who owns the gold. In the case of C3 (which was a Y2K
mainframe payroll replacement project), the Gold Owner “inexplicably” pulled the
plug in February of 2000 when the program (no doubt complete with cool features)
was only paying one third of the employees, after something on the order of four
years of labor. (We suggest that you visit

http://c2.com cgi/w ki ?Ct hr eePr oj ect Ter nm nat ed and think very carefully about
what it says there.)

Would requirements reviews have saved this project? We can’t say for certain. But
we can say that “feature-itis,” which comes at the expense of schedule, is a common
and predictable result of letting the programming team decide (and continuously
change) the priority of the requirements (in other words, make it up as they go
along) and not reviewing this prioritization with the “gold owner” project sponsors.

G2y

~ Tep 10
- F‘I
A4 Don’'t make sure the use case text matches the desired system behavior.

The phrase “use case driven” refers to the principle of using use cases, which capture
the “what” that the system needs to do, to drive analysis, design, testing, and
implementation (the “how”). If your use case text doesn’t offer high correlations with
what your users want the system to do, you're going to build the wrong system.
Period.



* # B &
S 7
_‘T...,- 10_1
Don’t use any kind of GUI prototype or screen mockup to help validate

system behavior.

Prototypes, whether they take the form of fully workable front ends, drawings on
scraps of paper, or something in between, generally provide a “jump start” for the
task of discovering and exploring use cases. Making sure that your use case text
matches the navigation that a prototype shows is an excellent way to ensure that
you’re going to build the right system. If you don’t have any visual frame of
reference, you run the risk that user interface people will build stuff that doesn’t
match your users’ requirements as expressed in the use cases.

& $ T
N7
_"[‘\'.::- ll.'!r
Keep your use cases at such a high level of abstraction that your
nontechnical clients have no clue what they’re about.

Good use cases have enough details to enable their use in driving the development
of a system from requirements discovery all the way through code. They also serve
as a very effective tool for negotiating requirements with customers and managing
customer expectations. This only works, though, if the use case text is specific: the
actor does this, the system does this. A customer can’t sign off on a use case that he
or she doesn’t understand.

¢ # B
N 4
__"[‘\'.::- llJrl
Don’'t make sure that the domain model accurately reflects the real-world
conceptual objects.

You're going to build code from class diagrams that have ample detail on them.
These diagrams evolve from high-level class diagrams that show the initial domain
model as you explore the dynamic behavior of the system you’re designing. This
evolution simply won’t happen the way it should if you don’t get the right set of
domain objects in place to start with.

# 5%
N e
- '-IRI:. lur
Don’'t make sure the use case text references the domain objects.

The main reason we discussed domain modeling (in Chapter 2) before we talked
about use case modeling (in Chapter 3) is that a key goal of domain modeling is to
build a glossary of terms for use case text to use. This technique will help you
considerably in your effort to be specific in your use cases, and it’ll also help you
focus on traceability, because your use cases and your class diagrams will work
together. Plus, it's quite a bit easier to do robustness analysis (the subject of Chapter
5) quickly if you've already named your objects in your use case text.



s # .q. 4
\' Top 10 /

Don’t question any use case with no alternate courses of action.

It's been our experience that upwards of 90 percent of good use cases have at least
one alternate course of action. The appearance of a word such as “check” or “ensure”
or “validate” or “verify” in use text is a clear signal that there’s at least one alternate
course, associated with an error condition. A use case is also likely to have at least
one path that the actor takes more frequently than the one specified by the basic
course. You need to be diligent about digging for these other paths.

P2y
[ Tep 10
Don’t question whether all alternate courses of action have been
considered on every use case.

One technique that works well in finding alternate courses is to question every
sentence in your basic course. What could possibly go wrong? Is there something
else that the actor could do besides this action? Could the system respond in
different ways? As we stated earlier, you should be relentless in your search for
alternate courses; much of the interesting behavior of your system will be reflected
in them, not in the basic courses.

# 2 7
[ Tep 107
Don’t worry if your use cases are written in passive voice.

Your use cases should describe actions: ones that the actors perform, and ones that
the system performs. Actions are best expressed with action verbs, and active voice
is the appropriate voice for action verbs. Passive voice is appropriate only when the

writer doesn’t know who or what is performing a given action, and that should never
be the case within use case text.

{01
N 7
__T:p _Jl:l__
A4 Don’t worry if your use cases are four pages long.

The basic course of a use case should be one or two paragraphs long. Each alternate
course should be a sentence or two. Sometimes you’ll have shorter use cases,
especially when they serve as “connecting tissue” (for example, use cases centered
around selecting from a menu). And there are times when you need longer use
cases. But you should use techniques such as the invokes and precedes constructs
we talk about in Use Case Driven Object Modeling with UML to factor out common
behavior so that you can write concise use cases that you're more likely to be able to
reuse—and you should definitely stay away from lengthy use case templates that
generate considerably more heat than light.



Chapter 5. Robustness Analysis

There are two major questions that help us link the dynamic model with the static
model. The first question is: What objects do we need for each of these use cases?
(We’ll pose the second question in Chapter 7.) We’ll use the robustness analysis
technique originally developed by Ivar Jacobson to help answer this question.

A robustness diagram is similar to a UML collaboration diagram, in that it shows
the objects that participate in the scenario and how those objects interact with each
other. Robustness analysis is not exactly a core part of UML; instead, it requires the
use of some stereotypes. Robustness analysis was part of Jacobson’s Objectory
method; it’'s an informal, “back of the envelope” kind of analysis that’s of enormous
value in helping you refine use case text and discover objects that are needed, but
that didn’t make it into the domain model.

When they built the UML, the three amigos recognized the existence of this
technique, but they didn’t incorporate it as a core part of the UML standard. Instead,
they developed Objectory process-specific extensions. They did this using a UML
technique called stereotyping, which allows you to bind custom icons to any kind of
symbol. In the case of robustness analysis, stereotypes implement the icons you see
on the screen as icons for classes.

Anatomically, a robustness diagram in UML is a class diagram, although Jacobson’s
original concept was closer to a collaboration diagram, which shows object instances
rather than classes. Today, though, it’s a class diagram on which, instead of showing
the normal UML class symbol, you use three kinds of icons, for three different kinds
of objects:

1. Boundary objects, which actors use in communicating with the system

2. Entity objects, which are usually objects from the domain model (the
subject of Chapter 2)

3. Control objects (which we usually call controllers because they often
aren’t real objects), which serve as the “glue” between boundary objects and
entity objects

Figure 5-1 shows the visual icons for these three types of objects.

Figure 5-1. Robustness Diagram Symbols

t_

Bounddary Envtary Connz
object ubjet ubje

E ]

Within the ICONIX process, this simple but highly useful technique serves as a
crucial link between analysis (the what) and design (the how), as shown in Figure 5-
2.

Figure 5-2. Robustness Analysis Bridges the Gap Between What and How



This diagram explains a lot about why software development, in general, is a hard
process. What we’re talking about is the need to start from a requirements-level
view, where you’re thinking only about what your users need to do with the system
without considering implementation details, and then driving that view of your
system forward into something that’s totally focused on design. In this case, on your
sequence diagram (see Chapter 7), you’re showing precisely how runtime object
instances interact with each other as your system is executing. One of the most
difficult problems in software development is to get from this “what” view of the
world into a “how” view of the world. Robustness analysis is a technique that helps
people do this.

At this preliminary design phase, you should start to think through possible
alternative design strategies and technical architectures that are going to differ,
depending on what technologies you’re using to build the system. You’re going to
start to uncover issues related to system performance. For example, you may find
that you have two objects that need to have heavy communication with each other
and that these objects are remotely connected across a network. This may have
performance implications for your design. During robustness analysis, you'll take
your requirements-level use case text and start making some preliminary design
assumptions.

It's curious that most of the current body of UML literature doesn’t make any
mention of this concept. Our experience is that success on your projects and
avoiding analysis paralysis is directly linked to using this technique.

Figure 5-3 shows where robustness analysis resides within the “big picture” for the
ICONIX process.

Figure 5-3. Robustness Analysis Helps You Refine the Use Case Text and the
Domain Model



The Key Elements of Robustness Analysis

Robustness analysis plays several essential roles within the ICONIX process. Note
that you will refine both your use case text and your static model as a result of
robustness analysis, as shown in Figure 5-4.

Figure 5-4. Robustness Model—-Static Model Feedback Loop

Completa?
Correct?

. All alternate courses covered?
S N N All functions identified?

O - \ Where does the data come from?
@
~ | Add new classes as needad.

Object discovery is driven by Assign attributes to classes.
analyzing the use cases.
ER=

=

The domain model evolves inlo a detailed static model,
This evolution is driven by working through the use cases,

1INl

?? It provides a sanity check by helping you make sure that your use case text is
correct and that you haven’t specified system behavior that’s unreasonable—
or impossible—given the set of objects you have to work with. This
refinement of the use case text changes the nature of that text from a pure
user manual perspective to a usage description in the context of the object
model.

?? It also provides a completeness and correctness check by helping you make
sure the use cases address all necessary alternate courses of action (which



we discussed in Chapter 3). In our experience, the time spent drawing
robustness diagrams toward this end, and also toward the end of producing
text that adheres to some well-defined guidelines, is invariably made up
threefold or fourfold in time saved in drawing sequence diagrams, which we’ll
talk about in Chapter 7.

?? It enables ongoing discovery of objects, which is important because you
almost certainly missed some objects during domain modeling. You can also
address object naming discrepancies and conflicts before they cause serious
problems. And, robustness analysis helps ensure that we’ve identified most of
the entity and boundary classes before starting sequence diagrams.

?? And, it serves the role of preliminary design, by closing the gap between
analysis and detailed design, as we mentioned at the beginning of the
chapter.

Let’s take a closer look at the three stereotypes that we apply to objects during
robustness analysis.

?? Boundary objects are the objects with which the actors (for instance, the
users) will be interacting in the new system. These frequently include
windows, screens, dialogs, and menus. If you have a GUI prototype in place,
you can see what many of your primary boundary objects will be. If you
follow the guidelines we gave you in Chapter 3, you can also easily pick
boundary objects out of your use case text.

?? Entity objects often map to the database tables and files that hold the
information that needs to “outlive” use case execution. Some of your entity
objects are “transient” objects, such as search results, that “die” when the
use case ends. Many of your entity objects will come from your domain
model.

?? Control objects (controllers) embody much of the application logic. They serve
as the connecting tissue between the users and the stored data. This is where
you capture your frequently changing business rules and policies, with the
idea that you can localize changes to these objects without disrupting your
user interface or your database schema down the line. Once in a while
(perhaps 20 percent of the time), controllers are “real objects” in a design,
but most of the time, controllers serve as placeholders to make sure that you
don’t forget any functionality and system behavior required by your use
cases.

You perform robustness analysis for a use case by walking through the use case text,
one sentence at a time, and drawing the actor(s), the appropriate boundary and
entity objects and controllers, and the connections among the various elements of
the diagram. You should be able to fit the basic course and all of the alternate
courses on one diagram.

Four basic rules apply:
1. Actors can only talk to boundary objects.
2. Boundary objects can only talk to controllers and actors.

3. Entity objects can only talk to controllers.



4. Controllers can talk to boundary objects, entity objects, and other controllers,
but not to actors.

Keep in mind that both boundary objects and entity objects are nouns, and that
controllers are verbs. Nouns can’t talk to other nouns, but verbs can talk to either
nouns or verbs.

Figure 5-5 summarizes the robustness diagram rules.

Figure 5-5. Robustness Diagram Rules

Allowed Not Allowed

R—+O /%Q;
o

< <
«——>

—0  O—0

A reviewer of a robustness diagram should be able to read a course of action in the
use case text, trace his or her finger along the associations on the diagram, and see
a clear match between text and picture. You will probably have to rewrite your use
case text as you do this, to remove ambiguity and to explicitly reference boundary
objects and entity objects. Most people don’t write perfect use case text in the first
draft.

In addition to using the results of robustness analysis to tighten up the use case
text, you should also continuously refine your static model. The new objects you
discover drawing the diagrams should become part of your class diagrams when you
discover them. This is also the right time to add some key attributes to your more
significant classes.

The Top 10 Robustness Analysis Errors

The flip side of the principles we just discussed takes the form of a number of
common errors that we have seen students make when they’re doing robustness
analysis on their projects for the first time. Our “Top 10” list follows.

&% 10%
L
W Violate one or more of the noun/verb robustness diagram rules.



These rules are in place primarily to get your text into noun-verb-noun format and to
help ensure that you don’t start allocating behavior to objects before you have
enough information to make good design decisions. (We’ll talk more about behavior
allocation in Chapter 7, which focuses on sequence diagrams.) The rules about
boundary objects are in place to ensure that you explicitly specify the boundaries of
the system, outside of which reside the actor(s) involved in your use cases.

¢ # 9 3

N 7
"M lurl

A4 Don’t use robustness analysis to help you use a consistent format for your

use case text.

The boundary object—controller—entity object pattern will tend to appear on many of
your robustness diagrams. This pattern has a close correlation with the subject-verb-
object pattern of basic English sentences. You should use robustness analysis to
make the text of your use cases stylistically consistent among themselves to the
largest extent that you can, which will greatly improve their readability and
maintainability.

#B/-,

Tep 10

Don’t include alternate courses on robustness diagrams.

You need to perform robustness analysis on all of your use case text, not just the
basic courses. Much of the interesting behavior of a system occurs in the context of
alternate courses, so it's very important to analyze that behavior as part of your
modeling efforts. Robustness analysis can also help you discover new alternate
courses, especially when you draw controllers with labels such as Verify and Validate.

& fF T
\__ Top m_'_/

W Don’t use robustness analysis to ensure consistency between class names
on class diagrams and in use case text.

Specifying system usage in the context of the object model is the magic formula you
need to build useful sequence diagrams. By naming your boundary objects and entity
objects in your use cases, you take a healthy step toward getting your sequence
diagrams off to a good start, by simply drawing those objects across the top of the
sequence diagram for each use case.

1+ # 6 &
N 7
__"n.p 10
W Allocate behavior to classes on your robustness diagrams.

As we mentioned earlier, controllers serve as placeholders for functionality and
system behavior. You should not start assigning methods to classes on a robustness



diagram because you’re not likely to have enough information just yet. You’ll make
decisions about behavior allocation using sequence diagrams.

¢ # 5
N~ d
__n.p 1u:|__
A4 Include too few or two many controllers.

We recommend having between two and five controllers on a robustness diagram. If
you only have one controller per use case, you're likely to have a lot of very small
use cases, each of which doesn’t really describe enough behavior. On the other
hand, if you have more than ten controllers on one diagram, you should consider
splitting your use case up into more manageable chunks.

& B 4%
N/
__"I'a'.u- 1l2lr
A4 Take too much time trying to perfect robustness diagrams.

The robustness diagram serves as something of a “booster-stage engine” that gets
the process of driving use cases forward into an object-oriented design off the
ground. Robustness analysis is a tool that helps us discover objects, allocate
attributes, and check the use case text for completeness and correctness. But once
we’'ve accomplished the overall mission, we don’t need to maintain the work product.
It's a means to an end, not an end in itself.

# 3
\. /
[ Top 10

Try to do detailed design on robustness diagrams.

The concept of throwaway diagrams is useful in connection with preliminary design;
it is not a useful concept when it comes to detailed design. Sequence diagrams are
the appropriate place for detailed design. Robustness analysis should be a quick pass
across all of the scenarios you’re going to build, in order to provide maximum value
to your project. If your preliminary design takes as long as detailed design, you'll
lose the benefits of this quick sanity check.

% 200
h—
__T:p _Jl:l__
Don’t perform a visual trace between the use case text and the robustness
diagram.

We strongly recommend that you have peer review of all of your use case text and
robustness diagrams, with each reviewer performing the finger trace technique that
we described earlier. You should not consider your use case done until you can pass
the simple visual trace test. When you’ve reached the point where all of your use
cases pass the test, the next step—drawing sequence diagrams—will be easier for
you to perform than if you were starting from first-draft, vague, ambiguous, abstract
use case text alone.



\' 7

VT Dpont update your static model.

You must update your domain model before you can consider yourself done with
robustness analysis and ready to move on to interaction modeling using sequence
diagrams. You can’t allocate behavior to classes that don’t appear in your static
model, after all.

Exercises

The following exercises, which come from the robustness diagrams within the model
for our Internet Bookstore, are designed to test your ability to spot the top 10
mistakes that people make during robustness analysis. Each page with a red label at
the top contains three or four of these mistakes; your task is to write corrections on
the page near the erroneous material. Following each of these pages is a page with a
white label inside a black box at the top; this page contains corrected material and
explanations of the top 10 rules that were violated on the previous page. Happy
hunting!

Log In
click Log In
g Home Page
() _/:\\_
S Il_c'k _
Ve = Account /: "
“:1 ¥ 8 E f 5 .“ _7"‘
Customer S ~
$countBadPasswords()
enter data and click Login /
<
' /\ Validate Login Info
SO
Login Page BV

Basic Course: The Customer clicks the Log In button on the Home Page. The
system displays the Login Page. The Customer enters his or her user ID and
password and then clicks the Log In button. The system validates the login
information against the persistent Account data and then returns the Customer to
the Home Page.

Alternate Courses:



If the Customer clicks the New Account button on the Login Page, the system
invokes the Open Account use case. If the Customer clicks the Reminder Word
button on the Login Page, the system displays the reminder word stored for that
Customer, in a separate dialog box. When the Customer clicks the OK button, the
system returns the Customer to the Login Page.

Log In
o L_______——-—*" \_\____J_j
enter data and click Login l _ Open Account
Login Fage
{ .\: K
e’ l"'x‘ B <
\'-\.
Customer )
click OK Validate
K‘x
click Log in L ",
Reminder Word Dialog Box ‘x‘\ \
pa <
_—"-_'_‘-'_'-'_--'__
_'___,_,-ﬂ""_ff Display
_--"'_F'_F'_-ﬂ_-
_—'—'_'_'-‘-'-'_'-'_
i
Home FPage

On the previous diagram:

?? The HomePage boundary object talked to the Login Page boundary object and
the Account entity object.

?? The Account object had a method assigned to it.

?? No alternate courses were represented.

Search by Author



type author name,;

7y prass Search
Catalag
h P
Customer Search Page {from Logical View]
."‘
. ™\ /
selee! book ™. LY /
“x" ) \_,\:}_J/ /
-v- -r_."'
__I'.
i -
rd
£ Book
4 (from Logical View)
Search Resulls Page <
. Search an Authar
¢ 10y _
TR —
— Search Resulls /
Add to Shopping Cart < |

Retrieve Details
Create

Basic Course: The Customer types the name of an Author on the Search Page and
then presses the Search button. The system ensures that the Customer typed a valid
search phrase, Author and then searches the Catalog and retrieves all of the Books
with which that is associated. The the system retrieves the important details about
each Book.

:-.'.;:;.-

Then the system displays the list of Books on the Search Results Page, with the
Books listed in reverse chronological order by publication date. Each entry has a
thumbnail of the Book’s cover, the Book’s title and authors, the average Rating, and
an Add to Shopping Cart button. The Customer presses the Add to Shopping Cart
button for a particular Book. The system passes control to the Add Item to Shopping
Cart use case.

Alternate Courses:...no search phrase...no books found...Customer exits before
searching...

Search by Author



type author name;

priss Search N
“ O
Catalog
Customer Search PEHE\ {lresen Loghcal Wisw)

Verfy Search
Phrase

seect book
Book

From Logical 'Wieeal

Search on Authes

Search Rasulls
Add 1o Shopping Cart f k‘/,,@

no phrase

Search Results Page

[noe missing arrow]

Retrieve Details

The sytstem retrieves the important details about each Book and creates Search
Results with that information. Then the system displays the list of Books on the
Search Results Page....

On the previous diagram:

?? There are too few controllers. Verify Search Phrase enables the system to
avoid performing a search with no search phrase, while Display is a standard
controller associated with Web pages. (These controllers also reflect alternate
courses that the previous diagram didn’t.)

?? The Search Results entity object is talking to the Search Results Page
boundary object.

?? The use case text doesn’t reflect the creation of the Search Results object.

Edit Contents of Shopping Cart



Check Cut

maodify guantity;
f\ press Updale | < .
Customer Shopping Cart Page Dalate Itam
< o
o — -
. v Update Quantity
Display ) -
< ' Shopping Ganl
1 {from Logical View)
Change Cost
T —— Item
Shopping Cart | {from Logical Wiew)
Purchaze Order : I
0
[Unettem S0 7 [ em | .
T = TRE
S/
-rv'r'

Basic Course: On the Shopping Cart Page, the Customer modifies the quantity of a
Line Item in the Shopping Cart and then presses the Update button. The system
stores the new quantity and then computes and displays the new cost for that Line
Item. The Customer Presses the Continue Shopping button. The system returns
control to the use case from which it received control.

Alternate Courses: (1) If the Customer changes the quantity of the Item to O, the
system deletes that Item from the Shopping Cart. (2) If the Customer presses the
Delete button instead of the Update button, the system deletes that Item from the
Shopping Cart. (3) If the Customer presses the Check Out button instead of the
Continue Shopping button, the system passes control to the Check Out use case.

Edit Contents of Shopping Cart



Check Qut

medify guantity;
press Updale <
Shoppang Cart Page Dealete Item
Customer . :
< <
Display Update Suantity !

and Cost

Shopping Cart
{from Logcat View)

Ibam
{fram Logical View)

Shopping Cart

Purchase Order |

| Line tem |

On the Shopping Cart Page, the Customer modifies the quantity of an Item in the
Shopping Cart, then presses the Update button. The system stores the new quantity,
then computes and displays the new cost for that Item.

On the previous diagram:

?? The Change Cost controller is unnecessary, since both it and the Update
Quantity controller operate on the Item object.

?? The use case text refers to Line Item, but it’s clear from the class diagram
excerpt and the robustness diagram that the text should refer to Item
instead. (This kind of name usage inconsistency can be deadly.)

?? The class diagram excerpt doesn’t reflect the attributes that are mentioned in
the use case text.

Ship Order



Shipping Clerk Shipper Interface Shipper

wave bar code "\'1,-’ <
— <
Imbarrupt o
Change Status
Shipping Station Sensor
Shipping Station Console

— ./{r,\'.‘
= Order \‘if'ﬁ

{ ) { . (o Logical View)

] GchangeStates()
) . LratrisveShippingMethod()
Display Shipping Retrieve Shipping
Method Method

Basic Course: The Shipping Clerk ensures that the Items listed on the packing slip
for the Order match the physical items. The Clerk waves the bar code on the packing
slip under the sensor at the shipping station. The status of the order is changed to
“shipping.” The Shipping Method is displayed on the Shipping Station Console.

N
Loy

T Ry

The Clerk weighs the set of physical items. The Clerk packages the Items. The Clerk
attaches a manifest appropriate for the given shipping method. The Clerk waves the
bar code on the manifest under the sensor. The Clerk sends the package out via the
associated Shipper.

Alternate Course: If the Shipping Clerk finds a mismatch between the Order and
the physical items, the Clerk stops processing of the Order until he or she is able to
make a match.

Ship Order



Shipping Clerk Shipper Interface Shipper

wave bar code [note missing controller] <

Change Status

Shipping Station Sensor

Shipping Staticn Console

Dizplay Shipping Retrieve Shipping
Methad Method

The system changes the status of the Order to “shipping.” Then the system retrieves
the Shipping Method that the Customer specified for this Order and displays it on the
Shpping Station Console.

On the previous diagram:
?? The Interrupt object is a construct that belongs to detailed design.
?? The Order object had methods assigned to it.

?? The use case text is in passive voice and not as precise as it should be
relative to the robustness diagram.

Take Recent Orders



Order Table

Customer AN Order Tracking Pags (ram Lageal View)
L“ﬂ '.'ﬂ;
'-1‘ :.- 1
\
NG
< = \
Order Details Page e 1
| Retrigve Order AN
Detail —
s Urder kY

{from Logical View)

Display | Order I p “\\\ _ Refrieve Recent

o | €1 [ Account | Orders
datePlaced | SR | i

dateShipped | * ““;'Eu i

reciplent [~ tev JariVord |

trackinghumber ! P |

s ! amaliddress [

shippingMethod |

Basic Course: The system retrieves the Orders that the Customer has placed within
the last 30 days and displays these Orders on the Order Tracking Page. Each entry
has the Order ID (in the form of a link), the Order date, the Order status, the Order
recipient, and the Shipping Method by which the Order was shipped. The Customer
clicks on a link.The system retrieves the relevant contents of the Order, and then
displays that information, in view-only mode, on the Order Details Page. The
Customer presses OK to return to the Order Tracking Page. Once the Customer has
finished viewing Orders, he or she clicks the Account Maintenance link on the Order
Tracking Page. The system returns control to the invoking use case.

Alternate Course: If the Customer has not placed any Orders within the last 30
days, the system displays a message to that effect on the Order Tracking Page.

Track Recent Orders



|
Yy .
Y | N
S Ordes

| {froem Legical Wiew)

Order Tracking Page I\

Custamer |
™ - 4 I.'_._-_'
- \ ( Order Table
\ \ | ifrom Lagical View)
- ™.~ Retrieve Order /
Order Details Page \\\ Details /
| /
-r.l'
\\ /
N, /
N,/
< C <
Display Retng:g Recent
5151

[ Order |
{ 1D
| datePlaced it
o
il remi
[kt o emailiddrass
| status
| shippingMethod

On the previous diagram:

?? The Order Details Page boundary object is talking to the Order Tracking Page
boundary object.

?? There’s no indication of what happens if the Customer hasn’t placed any
recent orders.

?? The class diagram excerpt doesn’t reflect the (newly discovered) Order Table
class.

Bringing the Pieces Together

Figure 5-6 shows the class diagram that includes some of the attributes on the
classes for our Internet Bookstore.

Figure 5-6. Domain Model with Attributes for The Internet Bookstore






Chapter 6. Preliminary Design Review

Preliminary design review (PDR) involves reviewing the robustness diagrams and use
case text for each scenario you’re planning to build, and making sure that the
diagrams and the use case text match each other and that both are complete and
correctly represent the desired system behavior. It also involves ensuring that the
domain model matches the robustness diagrams—in particular, that all entity objects
that show up on robustness diagrams are represented in the domain model. In other
words, we verify that we’ve identified the key abstractions from the problem space
that we’ll need to implement the desired behavior.

We should also review to make sure these entity classes are populated with
attributes and that we can trace data flow between the screens of our system (which
should now have names) through our entity classes, and perhaps into some
underlying database tables where we have persistent data. We should also be
reviewing the technical architecture behind our evolving design and making sure that
the design we’re beginning to develop is plausible in the context of that technical
architecture.

Figure 6-1 shows where we are.

Figure 6-1. Preliminary Design Review and the ICONIX Process

= Write descriptions of the wse cases—basic courses of action,
which represent the “mmnstreom,” and aliemistive courses,

for less-frequently traveled puths and emor conditions

» Perform robusiness anpivsis, For ench use easc:

[denuily a lirst cut of objects that accamplish the ~ S
stted scenario. Use the UML Ohjectory LA, L R

i [ & |
slercatypes f =

Lpdate your domain-miodel class diagmam with

new obsjeets and atteibutes as vou discover them,

* Finish uptlnting the class dingrom so that it reflects

the completion of the anebyses phase of the project

Milestane 2: Preliminary Design Review "~—_:'_| 1
= Iz

The Key Elements of Preliminary Design Review

PDR should involve representatives of both the customer(s) and the development
team, as well as any necessary managers, just like requirements review. There’s a
key difference, though: this is the last chance for the customer to change
requirements before the developers drive the given set of use cases through to code.



You can think of PDR as representing a line beyond which customers are no longer
welcome to actively participate in the process. We talked previously about how use
cases represent contracts between customers and developers; it’s during PDR that
you finalize those contracts.

As we described in Chapter 5, robustness analysis provides a sanity check by helping
you make sure that your use case text is correct and that you haven’t specified
system behavior that’s unreasonable—or impossible—given the set of objects you
have to work with.

This refinement of the use case text changes the nature of that text from a pure user
manual perspective to a usage description in the context of the object model. PDR
should center around peer review of all use case text and robustness diagrams. Each
reviewer should be able to do the following for each use case.

?? Read the course of action.

?? Trace his or her finger along the associations on the corresponding robustness
diagram.

?? See a clear match between text and picture.

Figure 5-5 shows the rules of robustness analysis. Given that both boundary objects
and entity objects are nouns, and that controllers are verbs, we can see that nouns
can’t talk to other nouns, but verbs can talk to either nouns or verbs. The goal is to
itemize all the required behavior of the use case in the form of control objects
(controllers). This involves taking the user manual view and identifying all the logical
functions that must occur, then massaging the narrative of the use case text into a
straightforward noun-verb-noun format. This format will allow us to check for
correctness when we embark upon detailed design by ensuring that we don’t forget
any behavior while we’re doing the design. Doing this also helps enforce a common
noun-verb-noun style of writing use cases across a design team.

As we just mentioned, the verbs in your use case text are represented as controllers
on your robustness diagrams. These controllers encapsulate the control flow, and
they serve as the “glue” between boundary objects and entity objects, between
boundaries and other boundaries, and between entities and other entities.
Remember that the reason we call them controllers, rather than control objects, is
that they serve as placeholders—we’re not ready to assign the behavior they
represent to any objects yet because we don’t have enough information. Decisions
about which methods go on which boundary objects and entity objects, and also
about which controllers deserve to become full objects in your static model, are
premature; we make them during sequence diagramming, not on robustness
diagrams.

Arrows can go in one or both directions between different types of objects on a
robustness diagram. An arrow pointing from a boundary object to a control object
indicates that the former is signaling the latter to perform. Or there might be a two-
headed arrow between a control object and an entity object, signifying that they
read from each other and write to each other. Note, however, that you need to use
only one type of arrowhead, which is not the case on several types of UML diagrams.
Unlike arrows on sequence diagrams, arrows on robustness diagrams don’t represent
software messages; rather, they simply indicate communication associations.



Because you won’t code from these diagrams, focus on the logical flow of your use
case and worry about the directions of arrows later, in your sequence diagrams.

You should, however, be aware of the presence of patterns across robustness
diagrams. Patterns often start becoming visible during robustness analysis. There are
two strategies, “control in the screen” and “use case controller,” that lend
themselves to discovering patterns connected to use cases. (See Use Case Driven
Object Modeling for details about these terms.) Looking ahead to interaction
modeling, design patterns can be highly useful in the context of sequence diagrams
and design-level class diagrams. You should not, though, start drawing full design
patterns on your robustness diagrams; it’s sufficient to start thinking about how
you’ll be able to use them to advantage during detailed design.

We used the term technical architecture at the beginning of the chapter. This
refers to the set of basic decisions you need to make about what technologies you're
going to use in implementing the system. These decisions involve things such as the
programming language (for instance, Java versus Visual Basic) and how you’re going
to build and distribute software components (will you go with Enterprise Java Beans
[EJBs] and Java Server Pages [JSPs], or take the Microsoft route with Distributed
Component Object Model [DCOM] components and Active Server Pages [ASPs]?).
The decisions you make about your technical architecture need to be reflected, to
some extent, on your robustness diagrams.

If, for instance, you're building with a technical architecture that involves EJBs and
JSPs, your robustness diagrams will tend to reflect the “control in the screen” pattern
more than they would if you were building pure HTML pages. Thus, robustness
analysis, which is meant to give you a loose description of the design that you can
crank out quickly, offers the chance for you to verify that your technical architecture
works for the scenarios you're building, and your review of these diagrams becomes
a “do-ability” check on that architecture.

Continuing the thought about patterns: The concept of throwaway diagrams is useful
in connection with preliminary design; it is not a useful concept when it comes to
detailed design. Sequence diagrams are the appropriate place for detailed design.
Robustness analysis should be a quick pass across all of the scenarios you're going
to build, in order to provide maximum value to your project. If your preliminary
design takes as long as detailed design, you’'ll lose the benefits of this quick sanity
check.

Robustness analysis allows you to make a reuse pass through the entire use case
model before you commit any use cases to the design. Looking for reuse possibilities
also helps you identify objects you missed during domain modeling. You must update
your static model before you can consider yourself done with robustness analysis and
ready to move on to interaction modeling (the subject of Chapter 7). The new
objects you discovered while you were drawing all those robustness diagrams and
talking about them with your customers need to go onto your class diagrams now,
not later.

This is also the right time to add some key attributes to your more significant
classes. While we’re talking about attributes: As we introduce windows and screens—
in the form of boundary objects—to our robustness diagrams, we begin to trace data
associated with those objects back to the entity objects from which the data comes
and/or to which it goes. The natural result of that tracing is the addition of attributes
to the classes in the domain model.



The Top 10 PDR Errors

The flip side of the principles we just discussed takes the form of a number of
common errors that our students make when they’re doing preliminary design review
for their projects. Our “Top 10” list follows.

&% 10%
N d
__"n.p mJ
A Don’t make sure the customers know that this is their last chance to
change the behavior before this release of the system is built.

Robustness analysis is where use cases get tightened up and the development team
gets ready to jump into detailed design. Your goal should be to have iron-clad use
cases in place before you start drawing sequence diagrams. As such, customers need
to sign off on those use cases during PDR. If you let customers continue to monkey
with use cases after this review, you increase the risk of “feature creep,” and you’re
also likely to run into problems with trying to do a design while the requirements are
changing underfoot.

-q\# 9/*,

Lepd
WV Don’t make sure the use case text and robustness diagrams match.

A reviewer of a robustness diagram should be able to read a course of action in the
use case text, trace his or her finger along the associations on the diagram, and see
a clear match between text and picture. If the reviewer can’t do this, you need to
rewrite your use case text, redo your diagram, or both. You should not proceed with
a sequence diagram for the given use case without passing this simple test because
your use case isn’'t done if it doesn’t pass, and therefore, you’'re not going to be able
to do good detailed design for it. We’re fond of calling this process disambiguation.
This involves removing the ambiguity from your use case text. We’d all rather not
design against ambiguous requirements if we can avoid it.

Lof R
\\ rd
_‘Tn.p 1'3'_1
Don’'t make sure that new entity objects are added to the domain model.

One of the reasons to do robustness analysis is to accelerate the evolution of the
initial (problem space) domain model toward a final (solution space) class model.
You build that final class model by allocating behavior to all of the objects that come
into play within your use cases. You can’t do behavior allocation properly if you don’t
have all of your classes represented within your static model before you start
drawing sequence diagrams.

& #70
N P
_"[‘\'.::- ll.'!r
A4 Don’t look for attributes on the domain classes.



You should strive to have a pretty full and rich set of attributes on the classes in your
domain model when you’re through with robustness analysis for a given set of use
cases. As we mentioned earlier, a number of these attributes should match up with
elements of your boundary objects, such as fields on a window or screen. Other
attributes will be more relevant to functionality that’s internal to the system. If you
don’t capture these attributes before you start doing sequence diagrams, your
decisions about which class does which operation will be less informed than they
should be. When we do OO design, we generally put the functions where the data is.
However, within our approach, we make these decisions in two steps: We start
allocating data during preliminary design, and we revisit this allocation when we
allocate the functions, during detailed design.

L& # 6 FS
N
[ Tep 1)

Expect operations to be allocated to classes during PDR.

As we discussed in Chapter 5, controllers serve as placeholders for functionality and
system behavior. You should not start assigning methods to classes on a robustness
diagram because you're not likely to have enough information just yet. You’ll make

decisions about behavior allocation using sequence diagrams, as we describe in

Chapter 7.

# 5%
N e
- '-IRI:. lur

Don’t advise your customers (again) that use case text is a contract
between developers and clients.

We tell you in Chapter 7 that you should copy the use case text onto the sequence
diagram you’ll be drawing for that use case. The result of this is that when you're
doing the design, the required system behavior is always staring you in the face.
This reinforces, to the designers, the nature of use cases as contracts between
customers and developers. It's during PDR that you have to reinforce that principle
to your customers.

i # .q. 4
N/
__'r:.p mr
Require the preliminary static design to make extensive use of design
patterns.

We talked about the concept of premature patternization in Chapter 2. This is also a
trap that people tend to fall into during robustness analysis and PDR. It's healthy to
discover patterns across robustness diagrams, especially those that map easily to
established design patterns or patterns that you’ve invented. What's not healthy is
expanding simple preliminary design patterns that appear on robustness diagrams
into detailed design patterns. Save the latter for sequence diagrams and design-level
class diagrams.



# 3
\. /
[ Top 10

Don’t review the noun/verb rules of robustness analysis.

On a sequence diagram, it’s perfectly acceptable for nouns to talk to other nouns—
this is because the verbs represent the messages between objects—so boundary
objects can talk to other boundaries, entity objects to other entities, boundaries to
entities. On a robustness diagram, though, nouns only talk to verbs, not other
nouns. The associated rules are in place to help you ensure that your use case is
expressed correctly, in noun-verb-noun format just like standard English dictates,
because we need to have both the nouns and the verbs identified before we draw our
sequence diagrams. Consistency of your use case text across the project helps
ensure a fairly straightforward move into sequence diagramming as you continue to
use your use cases to drive your design.

% 200
h—
__T:p _Jl:l__
Expect your robustness diagrams to show a complete detailed design
rather than a conceptual design.

We’'ve already told you that you shouldn’t see methods or design patterns on your
diagrams, so you shouldn’t be surprised that we’re going to tell you that you should
not be exploring any other facets of detailed design when you’re doing PDR. Also,
use cases, class diagrams, and sequence diagrams are persistent; robustness
diagrams aren’t (at least, not necessarily; a lot of folks like to keep them around,
especially if they’re contained within a visual model, and there’s nothing wrong with
this). So, you shouldn’t waste time trying to perfect your robustness diagrams as
your design evolves.

S #4010
N S
__T:p _Jl:l__
A4 Review the direction of every arrow on a robustness diagram carefully
instead of doing a quick trace to verify you’ve accounted for all of the behavior.

Robustness analysis is meant to be a “quick and dirty” technique that helps you
tighten up your use cases, discover new objects, and get a good start toward
detailed design. Robustness diagrams are meant as a means to an end; it’'s a waste
of time to make the effort to get the arrows exactly right. You should focus your
efforts on perfecting your sequence diagrams rather than tinkering with robustness
diagrams.



Chapter 7. Sequence Diagrams

After we finish our robustness diagrams and have a preliminary design review, it's
time to move forward into detailed design. Robustness analysis—preliminary
design—is about object discovery. Detailed design is largely about allocating
behavior: allocating the software functions we have identified into the set of objects
that we have discovered. In this chapter, we focus on the sequence diagram as the
central element of detailed design, or at least of the dynamic part of our object
model.

Once we’re through doing preliminary design using robustness analysis, we’ll go back
through our scenarios and do a second, more detailed pass through the design.
We’'re going to take another look at our informal first guesses at how these objects
collaborate together and make those statements very precise. By the time we get to
this point of the project, we should have accomplished two things. First, our use case
text should now be very complete, correct, detailed, and explicit. Second, we should
have discovered most of the objects that we’re going to need in the system, at least
at a conceptual, or idealized, level of abstraction.

Figure 7-1 shows where sequence diagrams reside within the “big picture” for the
ICONIX process.

Figure 7-1. Sequence Diagrams Drive the Allocation of Behavior to Software
Classes

Model i

i Dynamic

: - 3

| ;L'.i =

! _] — | >
Ul Prototype | usecme OO

i

| Dlagram —

[V \ﬁ
£

i - Static = -

= o Al e e

i ;T’ | =i o - = |¢ude"

i I 1 | | | i L L]

' Domain |

: . Class

Diagram
The Key Elements of Sequence Diagrams

You want to achieve three primary goals during interaction modeling.

?? Allocate behavior among boundary, entity, and control objects. During
robustness analysis, you identify (or at least take an educated guess at) a set
of objects that together could accomplish the desired behavior of our use
cases. You also break that behavior down into discrete units and create



placeholder control objects for each of those units of behavior. Now you need
to decide which objects are responsible for which bits of behavior. If you are
not certain about what the relevant boundary, entity, and control objects are,
it’s too soon to be contemplating how you will allocate behavior. Go back to
robustness analysis and make sure.

?? Show the detailed interactions that occur over time among the objects
associated with each of your use cases. Objects interact at runtime by
sending messages to each other. These messages serve as what Jacobson
calls stimuli—that is, a message stimulates an object to perform some desired
action. For each unit of behavior within a use case, you must identify the
necessary messages/methods.

?? Finalize the distribution of operations among classes. You should aim to have
a fairly high percentage (perhaps 75 or 80 percent) of your attributes defined
within the static model when you finish with robustness analysis. We advocate
a minimalist approach to defining operations during domain modeling and
robustness analysis. In fact, we recommend that you don’t assign any
methods during preliminary design. That’'s because there isn’t enough
information available with which to make good design decisions about
operations at that stage of a project. (Think about it: You haven’t discovered
all of the objects until you’ve completed all of your robustness diagrams, and
trying to allocate behavior into an incomplete set of objects is going to be
error-prone at best.) When you get to interaction modeling, however, you do
have good information (at least you hope to). As you lay out the detailed
behavior of your objects, on sequence diagrams, in the context of your use
cases, you should begin to finalize the process of finding appropriate homes
for attributes and operations. While you do this dynamic modeling, you will be
updating and expanding your static model, which will solidify your increasing
knowledge of how your new system should work.

The UML’s sequence diagram evolved from Jacobson’s object interaction diagram
and the event trace diagram from OMT. Within the ICONIX approach, sequence
diagrams represent the major work product of design. You draw one sequence
diagram that encompasses the basic course and all alternate courses of action within
each of your use cases. (You can use more than one page if you need to.) The
results form the core of your dynamic model, in which the behavior of your system
at runtime, including how the system will accomplish that behavior, is defined in
great detail.

There are four types of elements on a sequence diagram.

?? The text for the course of action of the use case appears down the left-hand
side. It's a good idea to break up the text with white space so that it’s easy to
see which sentence(s) correspond with each set of elements to the right.

?? Objects, which you bring over directly from your robustness diagrams, are
represented in rectangular boxes with two names. The name or instance
number, and the name of the object’s class, appear in the form object:class.
Either name can be omitted. The objects can optionally be displayed with
their robustness diagram stereotypes; this is often helpful in keeping track of
messages passed among actors, boundary objects, and entity objects.



?? Messages are arrows between objects. A message arrow can go directly
between two dotted lines, between a line and a method rectangle, or between
two method rectangles (see below).

?? Methods (operations) are shown as rectangles that lie on top of the dotted
lines that belong to the objects to which you’re assigning the methods. You
can use the lengths of these rectangles to reflect the focus of control within
the sequence: a particular method is in control up to the point at which its
rectangle ends. Unfortunately, focus of control is often more useful in theory
than in practice, because most visual modeling tools aren’t very well-behaved
with respect to this particular feature. If you find yourself getting frustrated
with trying to show focus of control on your diagrams, don’t hesitate to just
turn its display off—you don’t want anything to distract you from making good
behavior allocation decisions.

Getting Started with Sequence Diagrams

It’'s been our experience that many people get stuck at this point in a development
project. (This is especially likely if they’ve skipped preliminary design.) The technique
we describe below evolved from helping students get “unstuck” during dozens of
training workshops over the past several years.

Figure 7-2 shows the four steps you perform when drawing sequence diagrams the
ICONIX way.

Figure 7-2. Building a Sequence Diagram

Uise case tex! is refined during robustness analysis
and reviewed during the prelimingry design reviow,

. Baeko and
H. —l —f | .ﬁ.hr:lrr'l.alc

:f'_) 4 (‘} —e:.:] uf Amlnh

'x‘__ Robustngss
e Dinggram
. Copy the use case loxt to

the left margin of the
safuence diagram.
2. Add the entity objects,

3. Add the boundary objects.

g

4. Work through the controllers, one at a lime, and
figure out how to allocate the behavior among the
collaborating objects:

The user requiremeants are always visibig
as wa work through the design of the systam.
1. Copy the text for the given use case from the use case specification. Paste it
onto the left margin of the page. Copying use case text to begin the
corresponding sequence diagram enables that text to serve as an ongoing



reminder of what you’'re trying to accomplish. The result of this is that when
you’re doing the design, the required system behavior is always staring you in
the face. Note that if you don’t have all the relevant alternative courses of
action written out for each of your use cases, you should not proceed with
your sequence diagram. The diagrams will not cover all special cases, and you
will not uncover all the behavior of the use case. This means that you won’t
discover all of the necessary methods for your objects. (Do Not Pass GO; Do
Not Collect $200.)

2. Add the entity objects from the robustness diagram. Each of these objects is
an instance of a class that appears on the class diagram that represents your
static model. (If you forgot to update your static class diagrams in response
to new objects discovered during robustness analysis, do it now. These
objects should have most of their attributes in place. Many of them will be
serving data to other objects.) You can expect to discover missing attributes
as you work through your sequence diagram. Be religious about adding them
to your static model; this is likely to be your last step before code.

3. Add the boundary objects and actors from the robustness diagram. We didn’t
mention adding boundary objects to your domain model because these
objects are part of the solution space; the domain model addresses the
problem space. By accounting for boundary objects on your sequence
diagrams, you begin integrating the two spaces at the start of detailed
design.

If you follow the ICONIX approach, the first three steps in drawing sequence
diagrams are completely mechanical in nature. (In fact, we’ve reduced them to an
executable script that automatically generates a skeleton of a sequence diagram. If
you use Rational Rose, you can download a copy of this script from
http://www.iconixsw.com/RoseScripts.html. Similar functionality is becoming
available for other tools, such as GDPro from Embarcadero and Together/J from
TogetherSoft.) Scripts such as this have proven to be very useful in achieving
momentum as you get serious about your design. You get an immediate payback in
time savings from the work you invested in your robustness diagrams, which can be
very useful as you get serious about your design. The fourth step, deciding which
methods go on which classes, is the essence of interaction modeling.

Putting methods on classes involves converting the controllers from your robustness
diagram, one at a time, to sets of methods and messages that embody the desired
behavior. (Occasionally, you might elect to turn a controller into a real control
object.) Along these lines, we suggest that you use your robustness diagram as a
checklist to make sure you have all the required system behavior accounted for on
your sequence diagrams. You simply check off each control object as you draw the
corresponding message(s) on the sequence diagrams. This will help you eliminate
the “oops, | forgot about that function” error—which, as you might guess, is an
insidious one. (Note that one controller on a robustness diagram can translate to
several methods on a sequence diagram.)

There are two basic strategies for converting the controllers from your robustness
diagrams: “control in the screen” and “use case controller.” If you were to head
consistently in one or the other direction during your sequence diagramming efforts
across all of your use cases, that would qualify as patternizing. The idea is that the
team members who are responsible for the diagrams should establish, early in this
task, some design standards that can be used across all your use cases.



Looking in another direction: As you’re diagramming the interactions among the
various objects, well-established design patterns, such as those you might find in the
Gang of Four book (Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides:
Design Patterns, Addison-Wesley, 1995) would fit in nicely. Or perhaps you might
develop new patterns to establish a standardized approach to design problems that
appear across multiple use cases. Now is the time to visit your static model and
reflect those design decisions on your class diagrams, then draw your sequence
diagrams to match. This is where much of real object-oriented design (OOD) takes
place.

You've already checked the robustness diagrams against your use case text. By
checking your sequence diagrams against your robustness diagrams, you add a
measure of assurance that you’'re designing in response to what the user needs (in
other words, meeting your requirements).

The Top 10 Sequence Diagramming Errors

The flip side of the principles we just discussed takes the form of a number of
common errors that we have seen students make when they’re drawing sequence
diagrams on their projects for the first time. Our “Top 10” list follows.

&% 10%
N g
2 Tep 10
Don’'t do a sequence diagram for each use case.

Jacobson provided a straightforward description of the need for interaction modeling
in his business process reengineering (BPR) book (The Object Advantage, Addison-
Wesley, 1995): “It is only after you have drawn interaction diagrams [called
“sequence diagrams” in the UML] for all courses of events in all use cases that you
can be certain that you have found all of the roles that the system requires each
object to play and, thus, the responsibilities of each object.”

G2y

~ Tep 10
- F‘I
A4 Don’t put the use case text on the sequence diagram.

Writing the original requirements-level text for the use case (after “disambiguation”
of that text as a result of robustness analysis) in the margin of the sequence diagram
provides visual requirements traceability from the design back to your user-certified
requirements. The project team will have put a lot of effort into writing the use case
text, and the user community should have signed off on the results. The diagram
should match the narrative flow of the associated use case.

N

Tep 10
-

Lof R
7/
Don’t identify all of the necessary objects first, on a robustness diagram.

If you're having trouble getting a sequence diagram started, you probably wrote the
use case incorrectly and/or didn’t complete robustness analysis. Having proper



robustness diagrams, associated with rigorously defined use cases, in place makes
the job significantly easier.

i+ # l.:lr -
N/
__n.p m__
Don’t provide a visual trace between the use case text and the message
arrows.

Each sentence, and each sentence fragment as appropriate, within the use case text
should have some white space around it, and each sentence or fragment should line
up visually with the message or set of messages that correspond with the specified
behavior. This will enable people reading the diagram to easily see how the system
will accomplish the what that the use case describes.

¢ # B
\\ /
__"[‘\'.::- 10
Don’'t show plumbing; instead, keep your sequence diagram at a high
level of abstraction.

It isn’t necessary to show plumbing on robustness diagrams, since they reflect a
preliminary design view, but the sequence diagrams serve as the last stop before
coding and as such need to show the real design in full detail.

¢ # 5
N e
- _-T\Lp lﬂ—_
Turn your sequence diagram into a flowchart instead of using it to allocate
behavior among objects.

Remember that the sequence diagram is the primary vehicle for making behavior
allocation decisions. You’'re really using your sequence diagrams to assign operations
to your classes as you go, which means that you should not label your message
arrows with free-form text, but should instead link the message name to the name of
an operation on a class. (In Rational Rose, for example, you make this linkage by
right-clicking the mouse on the message arrow; Rose provides visual feedback in the
form of parentheses after the operation name. Behavior allocation—deciding which
operations belong to which classes—is of critical importance in the ICONIX approach.
Decisions made during this phase of a project dictate whether the overall design is
good or bad. This is where experienced designers earn their pay.

& # 4%
N7
__"I'\'.p 1lZIr

Don’t focus on interesting methods (real software behavior), as opposed
to getters and setters.

By exploring the dynamic behavior of the system, you learn which attributes and
operations are needed in the classes contained within your static model. To start,
add attributes and methods to your classes as soon as you decide where they go in



the context of your sequence diagrams. Note, however, that you should not spend
much time drawing “getAttribute” and “setAttribute” message arrows on your
sequence diagram. However, it’s still a good idea to take advantage of the principle
of encapsulation: Only allow access to attributes via “getter”’s and “setter”s. You just
don’t have to show every “get” and “set” on your sequence diagram. This gets
counterproductive because it's easy for you to lose the flow of the scenario that way.

d #0300
NS
[ Tep 10
Don’t think carefully about the origins of the message arrows (in other
words, which object is in control at any given time).

Messages between objects invoke the operations on the associated classes. Whereas
it’s not that important to get the arrows precisely right on robustness diagrams, it’s
essential that you get them right on sequence diagrams. The flow of control needs to
be explicit; it should be obvious at all times which object is in control.

S T
Sy
L Tep 10
Don’t follow basic principles of responsibility-driven OOD when allocating
behavior by drawing message arrows.

An object (and, by extension, a class) should have a single “personality,” and you
should do your best to avoid “schizophrenic” objects. This means that a class should
be focused on a strongly related set of behaviors. This parallels the well-established
rules that state that objects should be highly cohesive and loosely coupled. Other
principles you should focus on include reusability (the more general your objects and
classes, the higher the probability that you’ll be able to reuse those objects and
classes for other projects) and applicability (when you assign methods to the objects
on your sequence diagrams, always ask yourself whether there seems to be a good
fit between method and object, and also whether the task the method performs is
obviously relevant to the object.)

N 7
[ Top 10

Don’t update your static model as you go by building local class diagrams
for each package of use cases.

It's nice to keep a “clean” set of domain classes on a pure domain model diagram.
However, it's also a good idea to draw “localized” static class diagrams that show
both solution space objects and problem space objects. A good guideline for this is
one such diagram per package of use cases. As you come up with scaffolding and
other types of infrastructure, such as “helper” classes, put them on the static class
diagram, as well. This is where you shift your focus from the problem space to the
solution space. It’s best to use localized class diagrams—say, one per use case
package—because, by this time, your static model is probably too expansive to be
captured within one readable diagram. Doing this also allows work to be split across
teams.



Exercises

The following exercises, which come from the sequence diagrams within the model
for our Internet Bookstore, are designed to test your ability to spot the top 10
mistakes that people make during sequence diagramming. Each page with a red
label at the top contains three or four of these mistakes; your task is to write
corrections on the page near the erroneous material. Following each of these pages
is a page with a white label inside a black box at the top; this page contains
corrected material and explanations of the top 10 rules that were violated on the
previous page. Happy hunting!

Search by Author

Barié Coursan

T Casiivvad Iy Tl

T OF % AL D T

Seurch Piga. sl o vty e |
pravsses T Boaerh bumon

T BpiET SraiTw 1 sedrchOeAuend | |
P Cuntorsss ypadd o sssch T
phease, and then ssahis | resrimDistils |
e Caipiog and retripess o of

P Booky wiih whach that

Augtar i pupocaied

Tha wpabem rerisvss e
Iriportre Seisdy abvsa

Than i wysien dagiy the i g

kit of Bk on ha Saarch
Foush Pags W
£ Dockn lxiad i revarn ¥ 3
chronoiogesl arder by

e i

. i
[ TR T ) v
Fu Book's corva, B

Bouk's e ad suthon

o everage Farng, ad an

Ak ke Etvogeng Cart bulion

| T T re— o
Akl b Erwasparey Carl bulkin 1
i i i S The

ke prkek Conked B | b,

o Auk] e b3 Sosping Car m“’wmw‘

U casa. ¥ 2 || Gart inm cane
i

A Couniet v

H Pt Gambonent cid o Iy Ponind i !

search phrass hetor presaing

8 Saarch bution_ha myien

[ -

ot sflact i prTpi e
Caninmer ia hype 2 masech

prvass

B B wynisrn wan unable ic find
vy Books ssscosded with tha
Author that e Contomer
apacted 1=e watem dnpdan
o rasnsge i St a%ect and
proTgda. tha Cudorar o
i & i ferent Sadoh,

M P Comilrven bnirems B panga
1 it wiry ol W by presidesg
1 A 8 B Cart
Lt Um sywberr smbomy
ool 160 Lae case bom
luilh Wl Lk Dl ARl
[eeiji)

Search by Author



dhaphan |

On the previous diagram:

?? There is no Search Results object. This object would have been identified
during robust-ness analysis, since we obviously aren’t supposed to display the
entire contents of the catalog. (Note that the case text on that diagram was
incorrect as well in this regard.)

?? The Search Page sent a display message even though the diagram shows that
the Catalog is in control.

?? The Catalog object invokes the displayErrorAndPrompt method on the Search
Page.

Log In



tha D Basdon, P wywsesm aviums. e
it 12t Logn Pige.

f o Coritema it i Lo 1D thad B
YT G060 N SSCOgRT, TR BT
iy i P 1o el afie
POTOEE P CURDmE io ST B 8
difigrae] 1D or chch Fon Maw Accound
[

I o Docormed et ) incirmedi
paspso the rpder deplres o
P ag 1 ! oo el
proTt e G enmar s
Pl e i Bl ]

If Bt Gt arter i incormect
paend Fvse mes. e Speen
dimciayy i rcigs leling Be
Cn T el 07 e Bhukd
rontac! Customer Servics, andlsiss.
freezes tha Lagin Page.

Log In




[note white space] 2 |
. 2. Mo Page. L Loz Page. 4. Barminde ord Dislag S Acmourl.
- 1. Costetus Bay

T Guriitrner choios tha Log n bulson
o i Home Page.

T sy T Sapkeys the Logn Page. [
The Culfireed ey ies o7 M uaer 1D

and g, ansd Fran cicts
e Lo i BuBOn

i dy ST wiblates. th log

I
| | vl pisLagniris |
. -
indonraton agare B perpsen dapdw ] |

Apetor] dili, il Faas reter e
By Coawdomar i o Hiome Page

Arsrrate Couried
M B Comidormas chchn B Haw Aotiond

e on B Login Page. e sywem
reciom a Cpan Account Lee cme.

H B Cusptornar clickn B Haminder
i bk o1 e Login Paga. e | |
e ey, e remindss sord ul
shared lor that Cutieee, | 3 Sepaiae e
chalog bow, W P Cinmer cliciy i ! | "
s OF Eufioe, e Sy st sstums the :
Curdnm i3 the Login Page. e

H i Cuminmae grines o eaer 1) Brai e

s o o g, i | sastsyErranerormets |
RIS B TN 1 I et and . 1

promgpls e Cunformar b= after prdan g r—

deerent I O hoK P M ASODUE

tdon |

H EBw Cuicman st an incormes BapLwEno kiRl |
e, Ll s deiayd @ = e o
meanage i fut fiecs g
prampls P Culieesar i |
s . o her pawpennd

H e Ciasiomes enisry an ncomest |
falticimrsd it L, e rpsbirs

ditziays. & meage ieling e L
Curiteri Pl b of b ihoukd )
contac] Cusiomer Berion. and ale

Bnaws Be Logn Page |

On the previous diagram:
?? The use case test doesn’t line up visually with the message arrows.

?? The Account object sent a display message even though the diagram shows
that the Login Page is in control.

?? The arrow associated with the “reminder word” alternate course has a label,
rather than behavior allocation in the form of a method.

Ship Order



__ Lg!_'__ 1:5;;;% ) 4.: Stipging Siation S 4.: Shipsig Siation Corsoly
0 . ]
| !
| I rasdBarCods] | |
" S
| i !
| ! '
| | |
! 4 3 |
| B pe—
! T
| |
| ! !
1
I I
Ship Order

[note presence of
use case text) (E |

Ear Do 1. Shiging Uk o

B e e, Pl
sirs process g of e Crder
ol g o b e b
L

On the previous diagram:
?? The use case text doesn’t appear on the left side.

?? The Shipper Interface is missing; the fact that the Shipping Clerk talks
directly to the Shipper means that the diagram doesn’t show how the
shipment gets recorded.

?? The Sensor object has control, even though this isn’t logical for a sensor in
this kind of situation.



Edit Contents of Shopping Cart

Basic Course

On e Shopping Cart Pags,
ther Customer modifies the
cuuantty of an Bam in the
Shapping Cart, and than
presses the Lipdate bution.

Thia systam slores (ha nis

quantity, and then compules
anil dsplays e rdw cosl far
theat Ibam,

the usme carsa from which it
racaived coniol,

Allerrate Courses

If thee Custormer charges the
cquanity of the Ram o 0, b
sysinm delebes that Hem from
the Shopping Carl.

If tha Customar prosses the
Dot buttan inslesd of $e
Lipdate bution. the syalem
daletes thal ltem fepm the
Shopping Cart.

I tha Customar prosses tha
Check Out button instead of the
Conlinug Shapping bultan, the
SYRIIM pAsEes caninol i the
Check Out use case.

anContinuaShopping )

enDedets| )

S

dalkdaltem )

|
|
mmmdeﬂl.lt]F
|
)

Edit Contents of Shopping Cart




onllpdata :l_ | | |
= getlieml

note absence

On the Shapping Carl Page.
thir Customer mocfles the
quani ity of an Bem in tho
Ehopping Cart, and 1hen
presses the Lipdate: buiton.

| updateCuantitphrdCosti ) '0f message ] |
The system slores the new | = | |
quantity, and then compuies
and displays thea narw cosd for
that Hem, L—_; ...... J | |

enCantirueShapmng )

Altamabe Courses | | |
| defotnitem |

i tha Cuslomer changes tha i i

quantity of e em to 0, the

system deletes that Item from |  destray( )

the Shopping Cart. | | delalahem] b | - |

I e Cusiomer presses e | | |

Dalete bution insteag of tha | onDalated )

Lpdale butien, 1ha sysiam - | |

dolnles that em from the |
Ehopping Cart.

o
Py
Basic Course 1 Custompr Qe Shoppi
|
|
|

displayCast] }

The Cuslomer présses e

Cerfinwe Shapping butien, |
Thea system relurms control o
thi Usd case from which & |
recehied contod,

dedetaltem| )

-l

| | destroyi )

I e Cusiomer presses e |
Check Oult button instead of the
Continue Shapping buticn, the
syshem passes control 1o the
Chiscle Out use case. |

On the previous diagram:
?? The second getltem method call clutters up the diagram.
?? The Item object sends a deleteltem message to the Shopping Cart object.

?? There are no destroy messages, which might indicate a hole in the designer’s
thinking, since the Items won’t actually get deleted unless the system will be
coded in a language, such as Java, that provides for automatic garbage
collection).

Track Recent Orders



o I W Y -
] . L o w,

___."ﬂ;._. 1L Comorrnd 2. Do Trmohieeg Panges 5 Cove Dotk Pige A ket Tt 8. Coicen

Rasic Couns

Tha smiem mireves e Ordes
That e Caslomer e placed
il B st §] iy, weed i ecsmtiden| |

|
I !
deiphinys P Cvidérs on ol 1 I | 1
|
[

e Trasohors) Posgps. [ i sty

et p Dbk B0 i e oy o k. aniraTlcky |
s Circker date, tha Chrkar giadem, the s
Corier recipiess, ared T Shipping

kst By which e Drdes

retsraatundi | |

shippedd. Tha Cumioress clcks ona nic gl
Tha wpakem meroyves ord dage b  — "'l
i combends of e Ovdér, in el |
ety e, o W (ieded Delidy. ' i
Page, Tha CAIom pesied 0 1 g

AT I0 Tl D Trssching Fasgs.
Oy thee Qo tas Mredbed

¥ e Caritomer bein reol pliscand sy

ks il e ] 35 ddarys. Mo

ApHET Dadviny e aaae 1 I Mt

et o g D Tricking Pags. b+ Sl |
| Sectatialieimsagel | | [

Track Recent Orders

.
[mote white space] ']:l

o Gk a1 Dok sdation, ol
O spigmirl b

fha Shipping Maiad by which e
it st Lhippsd

The Cuariorer cicta ona ink. The

h.'l.l'fl:l_

vy M. o e Crbe
ot Priga.

Thes Laspscamer predtes 0w
R b T vied Thinckioy) P,

i Fub Tz s Tranad
e DS Fod o e Clslich
T Aorart Mamarans n
The pystem ek mrinl
ol o L Dlr

almcounilsinisns) |

A Cimthe

| e Cosiomes haw mof placed sy
iy itk Pl et 30 chag, e
Sk B i e
alfect on e Coder Tracking Page.

I
|
|
I
|
I
|
|
| end) |
| .
|
|
|
I
I
|
|
|
On the previous diagram:
?? The use case test doesn’t line up visually with the message arrows.

?? There is no Order Details object, which would have been identified during
robustness analysis, and thus the use case text is wrong, as well.

?? The Order Table object invokes the displayNoOrderMessage method on the
Order Tracking Page. It's a bad idea to have persistent database tables, or
their proxy objects, invoking methods on the user interface.

Bringing the Pieces Together



Figures 7-3 to 7-5 together show a design-level class diagram for our Internet
Bookstore. (The classes on the left side of Figure 7-3 match up with those on the
right side of Figure 7-2. Figure 7-4 has a similar relationship with Figure 7-3.)

Figure 7-3. Static Model for The Internet Bookstore (Part 1)

P .

S =
il
A s
1 e rednaPmmgs)
R m | o
s I
r'll ", d_ulm_ I
e i and R L . = )
] J S
i o Enksy e 5
ﬁ oy = :. fiimm Paga
e S | i Log i ,:‘-—
A= ertanl)
P i)
e e e Sy A _ — e
- i ., T
iy . [==
| . = gy S|
N I K‘- !m
Ewann Page BRNET S T P il e
- r o i Al s ]
b ; [ Stuairs Curt Pugm hastgthsCret Mesasys|
] | : ! T
s ErookngFrampl| f =tiosann 1
l oyl |
]
| e P |"h"“"] } ot D gt
LRI - |
 Pooia ok | oy
[ e satereryy
[ T oty
--:nmm| T P &
; \ /
T, B r b1 rd
wvahy. / \ Py
B Pty ! \
cmtiad] s oo -
= ——
unmhac sy
prerey et
e ;
= g
| ey

Figure 7-4. Static Model for The Internet Bookstore (Part 2)



Figure 7-5. Static Model for The Internet Bookstore (Part 3)



‘_mmlnfu
._. e
pretCaTt U s
Shippar knlorince
manrackagel] |
‘H‘"‘»,
H'KH
T '-._-1
_,_,-'—""'-F? o
_‘_,_,-'—'_'_'-F‘- &
Bhippng Station Conscle torrs L Caiin Ve
s ply Shepaingdathed )
i W .';/
Shipgerg Siation Senbar
i readBurCedai)
7K
- b !
/ \
b
®,
=
N
BHppig Sl



Chapter 8. Critical Design Review

Critical design review (CDR) involves trying to ensure that the “how” of detailed
design, as shown on sequence diagrams and associated class diagrams, matches up
well with the “what” that the use cases specify, and that the detailed design is of
sufficient depth to facilitate a relatively small and seamless leap into code. CDR also
involves reviewing the quality of your design from a number of perspectives. These
might include modularity, cohesiveness of your classes, coupling between objects,
and a number of other metrics that we can lump together and call “O0 goodness.”

At this time, you might also be making sure that your design meets a set of internal
design standards for your organization. Sometimes these standards might make use
of design patterns. For example, there may be a project-wide decision to use
factories to create instances of our objects. Or there might be standard access
mechanisms for interfacing to an underlying relational database. The sequence
diagrams, and the detailed class diagrams that go with them, should reflect the real
software design, as the senior designers intend for it to be coded. We’ve made our
best attempt to stabilize and validate our requirements and our technical
architecture before we got here. CDR is the last stop before code, so at this point
we’'re looking to nail down all of our remaining design issues. Figure 8-1 shows
where we are.

Figure 8-1:. Critical Design Review and the ICONIX Process

» Allocate behuvior. For each use cuse:
Tdeasta b the messages thit necd to be passed between obects,
the abpects, and the assocusted miothods 10 be mvoked e
D o sequence disgrm wath usse case 1esl mnning L, = | )
o the Teft side and design information on the nght =1 | }——
Comtinue o upmlte the closs diagram with attnbutes L | = i
and operations os you firel them.
11 you wish, show, on a colleboration diagram,

the key tmnsactions betwien chjects.

I o wish, use a state dingrum sa shiow the real-time behavior,

* Finish the static mode] by odding detailed design

mfarmation [ for mstance, visibility valoes and poattems), e I
i

* Verify with your team thit vour disign satisties R
all the requirements you've identificd,
-
1 Milestone 3: Critical Design Review — ‘J
b % - --
= = [ FiAk

The Key Elements of Critical Design Review

The first thing to keep in mind about CDR is that it should involve designers and
developers more or less exclusively. We told you in Chapter 6 that preliminary
design review (PDR) was the last chance for most of your customers to be involved
on a hands-on basis. Unless you have customers who have significant expertise in



detailed design, and who need to be involved in reviewing detailed designs (whether
for technical or political reasons), you should, in effect, smile and say, “Thanks, we’ll
take it from here. Now that you’ve signed off on them twice, we’re freezing the
behavior descriptions until we get this stuff built. See you then, when you can test
what we built against these behavior descriptions to verify that we built what you
wanted.”

Before you commence CDR, you need to make sure that you have sequence
diagrams for all of the use cases for which you’re going to deliver code in the current
release. Per our quote from Jacobson in Chapter 7, you can’t be sure that you’'ve
found all of the responsibilities for each of your objects unless you’ve drawn
sequence diagrams for all of your basic courses and all of your alternate courses for
all of your use cases. Taken together, these diagrams form the core of your dynamic
model, which should now show the behavior of your system at runtime, including
how the system will accomplish that behavior, in great detail.

One key aspect of CDR involves performing a careful review of the matchups
between each sentence of the use case text and the message(s) across from that
text on the sequence diagram. The project team will have put a lot of effort into
writing the use case text, and the user community should have signed off on the
results. Also, the robustness models will have demonstrated feasibility in the context
of the object model—in other words, we’ve found some objects that can work
together to provide the required behavior. Now it’s time to ensure that the “how” on
the sequence diagram addresses the “what” specified by the use case.

It should be obvious which message or set of messages among the objects on the
right-hand side of the diagram corresponds with each sentence of the use case,
including the basic course and all alternate courses. Ensuring that the flow of
messages corresponds well with the flow of the use case is critical in enforcing
traceability of your design back to your customer-specified functional requirements.
We recommend that senior designers perform this kind of review for more junior
designers, and (think about it) that junior designers do the same for more senior
designers.

The next thing to look for is continuity of messages. We told you in Chapter 7 that
it’s essential that you get the direction of message arrows right on sequence
diagrams, that the flow of control needs to be explicit. It must be obvious at all times
which object is in control. If you notice any leaps between objects that don’t involve
a message between those objects, you need to make sure the designers eliminate
those leaps.

While designers are making behavior allocation decisions, they’re making decisions
that affect the quality of the classes in your design. Halbert and O’Brien defined four
criteria of a good class, which designers should keep in mind at all times when
deciding which methods belong with which objects on sequence diagrams:

?? Reusability. The more general your objects and classes, the higher the
probability that you’ll be able to reuse those objects and classes for other
projects. Ask yourself whether assigning a method to a class makes that class
more or less reusable.

?? Applicability. The concept of applicability is basically the same in the context
of interaction modeling as it is for domain modeling and use case modeling.
When you assign methods to the objects on your sequence diagrams, always



ask yourself whether there seems to be a good fit between method and
object, and also whether the task that the method performs is obviously
relevant to the object.

?? Complexity. Our first two criteria, reusability and applicability, are still
somewhat theoretical. The subject of complexity is an indication that we're
about to get serious about implementation issues. In essence, the issue here
is whether it’s easier to build a method in one or another object.

?? Implementation knowledge. This criterion involves asking whether the
implementation of the behavior depends on details internal to the associated
method.

Applicability is probably the most important of these criteria. As you become
experienced at OOD, you’ll develop an intuitive sense of “fit.” When this happens,
you’ll cut through the behavior allocation decisions on your sequence diagrams like a
hot knife through butter.

Note that we learned about these criteria (and also the ones that follow) from Grady
Booch’s Object-Oriented Analysis and Design with Applications (Addison-Wesley,
1994).

Now is also a good time to think about your classes and ask yourself if they satisfy
the following quality criteria:

?? Coupling is a measure of the strength of a connection between two classes.
You can improve the modularity of a system by designing it with loose
coupling wherever possible. This translates into classes that are highly
independent.

?? Cohesion is a measure of how tightly connected the attributes and
operations of a class are. It is desirable to strive for high functional cohesion,
which occurs when the elements of each of your classes are working together
to provide a clearly defined behavior (in other words, a single personality).

?? Sufficiency is the condition in which a class encapsulates enough of the
abstractions that your models present so that it offers something meaningful
and efficient, with which other parts of the system can interact. The key
question is whether the class covers all the relevant cases.

?? Completeness is the condition in which a given class’s interface captures all
the relevant abstractions. So a complete class is one that is theoretically
reusable in any number of contexts. Keep in mind, though, that you should be
careful not to overdo your efforts in this direction—you might never get
anything built.

?? Primitiveness is the condition in which an operation can be efficiently built
only if it has access to the material on which your models are built. The idea
here is that you can design certain operations that you can use as building
blocks for other operations as your design evolves.

Another criterion for a good sequence diagram is a sufficient amount of detail.
Sequence diagrams serve as the last stop before coding and as such need to show
the real design in full detail. You shouldn’t consider this part of the project done until
all the methods from your sequence diagrams are assigned to classes within your



static model, and you’ve factored in “Booch stuff,” such as abstract and
parameterized classes, friend relationships, and composition. (Booch stuff is
especially important if you’re going to code in C++.) You also need to address issues
related to things such as persistent storage and the distribution of objects across
your system.

By the way, if you are building in C++ and you want to learn more about Booch
stuff, we recommend (in addition to the Booch book) Robert Martin’s book Designing
Object Oriented C++ Applications Using the Booch Method (Prentice Hall, 1995). Bob
wrote this book before he started teaching XP. One of our favorite quotes is from
page 43, where he writes, under the heading “Why Is This Better Than Writing
Code?”, the following:

Why should you go to all the trouble of drawing these diagrams, when
the code explains things just as well, if not better? For problems as
simple as the one above, you shouldn’t. Diagramming such simple
models is an exercise in futility and pedantry. | have done it here only
to demonstrate the mechanics of the diagrams, not their intended use.
The advantage to using the diagrams will become more apparent as
we go on to study more and more complex examples. The diagrams
allow us to visualize, on one page, concepts that might take dozens of
pages of C++ code to express. They also allow us to quickly play with
these concepts and communicate them to others. Moreover, as we just
saw in the discussion of the uses relationships, these diagrams allow
us to visualize physical compiler dependencies as well as logic and
algorithmic concepts, so that we can make a full spectrum of decisions
about the static and dynamic structure of an application. Not only can
we examine the logical consistency of the design, but we can also
probe how well the design will fit into our development environment.

Although Bob is now off preaching the XP gospel, we think he had this about right
the first time through.

A surefire sign of a “generic” sequence diagram is the absence of implementation
details, such as those having to do with distribution. If you’re using a technology
such as DCOM or EJB, your sequence diagrams should reflect how you’re using
specific elements of that tech-nology. Remember: You can’t effectively build code
from a detailed design if the connection between the design and the implementation
environment isn’t obvious.

Looking in another direction: As you’re reviewing the interactions among the various
objects, you may decide that one or more well-established design patterns would fit
in nicely. You might choose to use the Factory Method pattern, which lets a class
defer instantiation to subclasses, or Iterator, which lets a client traverse a list in
various ways, without needing to know how that list has been implemented. See
Design Patterns (Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides:
Addison-Wesley, 1995) for more information about these and other design patterns.
Or perhaps you might develop new patterns to establish a standardized approach to
design problems that appear across multiple use cases. This is the time to review all
of these decisions and make sure you’re comfortable with them, because soon these
design decisions will be reflected in code.

We introduced the concept of technical architecture in Chapter 6 as being the set of
basic decisions you need to make about what technologies you’re going to use in



implementing the system: the programming language, how you’re going to build and
distribute software components, and so forth. We told you that the decisions you
make about your technical architecture need to be reflected on your robustness
diagrams. During CDR, you need to validate the detailed design as it reflects and
expands upon that technical architecture. Where one of the goals of PDR is to ensure
the “do-ability” of the architecture, here you’re looking to actually build that
architecture to implement your scenarios.

The Top 10 CDR Errors

The flip side of the principles we just discussed takes the form of a number of
common errors that our students make when they’re doing critical design review for
their projects. Our “Top 10” list follows.

&% 10%
__"n.p mJ
W Invite nontechnical customers to the design review.

Sequence diagrams are generally full of details that most likely won’t mean much to
any but the most technically aware customers. They exist to be used by designers
and developers. Thus, CDR sessions should include those people involved in detailed
design and development decisions, and no one else.

4% # 9 L

N 7
LR

WV Don’t check the use case text carefully against the body of the sequence

diagram.

A reviewer should be able to see easily the visual trace between a sentence of use
case text and a message, or set of messages, that describe that behavior in terms of
object interactions. The right-hand side of the diagram should also account for all of
the use case’s alternate courses of action in ways that are clear to the reader. If this
doesn’t hold true, it's possible that the designer who did the diagram hasn’t fully
addressed the requirements expressed by the given use case.

Lof R
N '
_"Tl\.p 1'5',1
Don’t check the origin and destination of every message arrow on every
sequence diagram carefully.

It's essential that a sequence diagram show which object is in control at all times. If
there are discontinuities, there will be problems with the code if someone tries to
build it based on the diagram.



i+ # l.:lr -
N
__n.p m__
Don’t think through the Halbert/O’Brien criteria as you review your
sequence diagrams.

You should look for a high degree of reusability of objects across your sequence
diagrams, and a high level of applicability of methods within each object. You should
also look to keep the complexity level, and the level of implementation specificity,
low within methods and within objects as a whole. Working to meet these quality
criteria will give you a healthy foundation for a robust object-oriented design.

¢ # B
\\ /
Tep 10
Don’t review your static models for “quality class” criteria.

One of the best sources of guidance for making good behavior allocation decisions is
responsibility-driven design. As we explained in Chapter 7, a class should have a
single “personality,” and you should avoid “schizophrenic” objects. This means that a
class should be focused on a strongly related set of behaviors that have minimal
dependencies on other classes. The most important of the “quality class” criteria
presented earlier in this chapter are high cohesion and loose coupling; single-
personality classes are essential to achieving these goals. To expand on this, let’'s
turn to Rebecca Wirfs-Brock (Designing Object-Oriented Software, Prentice Hall,
1990): “Responsibilities are meant to convey a sense of the purpose of an object and
its place in the system. The responsibilities of an object are all the services it
provides for all the contracts it supports. When we assign responsibilities to a class
we are stating that each and every instance of that class will have those
responsibilities, whether there is just one instance or many.” Make sure, if at all
possible, that somebody who's read the Wirfs-Brock book—and understood it—
participates in your critical design review.

¢ # 5 %
\' n.pm'/

Don’'t worry about the “plumbing”; it will take care of itself.

The sequence diagrams serve as the last stop before coding and as such need to
show the real design in full detail. This includes details about persistent storage (to
which database tables are you going to map the various objects?) and distribution
(on which layer or tier will each object reside?).

i # .q. 4
N/
__'r:.p mr
W Don’t consider whether design patterns would be of any use in your
design.

Design patterns can provide you with a great deal of leverage with regard to the
reusability and maintainability of your design. The more patterns you discover and



reuse across your sequence diagrams, the greater the momentum you can build as
you push toward code, and the more time you’ll have to focus on the hard decisions
that don’t lend themselves to patternizing.

e F 3
Ay e
[ Top 10

Show “generic” sequence diagrams that disregard implementation
technology such as DCOM or EJBs.

As we said earlier in this chapter, sequence diagrams are the last step before code
within the ICONIX process. You should be working to minimize the size of the gap
that you have to cross between detailed design and implementation by adding a
reasonable amount of detail about the technology you’re using to build the system.

S T
N 4
L Top 10
Don’t review sequence diagrams for every scenario that will be built in the
current release.

If you don’t have, or don’t go through, sequence diagrams for one or more of your
use cases, or if any of your diagrams don’t show both the basic course and all
alternate courses for the given use case, there’s a good chance that you will miss
some behavior that one or more objects needs to perform, make some decisions
about behavior allocation that aren’t optimal, or both.

So# o1 0%
Ay
[, Teop 10 |
Don’t worry about the details of your design before you jump into code.
Just assume that refactoring the code will fix everything.

Refactoring is defined, in Martin Fowler’s book Refactoring (Addison-Wesley, 2000)
as “the process of changing a software system in such a way that it does not alter
the external behavior of the code yet improves its internal structure.” This sounds
like an excellent technique for optimizing code. However, XPers also rely heavily on
the likes of this, from Extreme Programming Installed (Ron Jeffries, Ann Anderson,
and Chet Hendrickson; Addison-Wesley, 2001): “[W]hen the design wants to change,
as it will, change it.” People who discover—and change—the design while they’re
coding are probably not going to build systems as robust as those built by people
who spend a sufficient amount of time completing, and reviewing, the design before
coding begins, because you lose the global view of the design when you’re focused
on coding one small piece of it. Refactoring won’t guarantee that everything comes
out right if you've merrily skipped past analysis and design—and it certainly won’t
guarantee that you're building the right system (that is, the one that meets your
users’ requirements).

Trying to design and code at the same time is like playing chess on the Internet
while you're doing your calculus homework. You might be thinking, “Wow, | must be
really smart to be able to do this!” to yourself, but if you're like most people, both
your chess rating and your math grade would probably improve if you undertook



these two mentally demanding tasks separately. (We used to know a guy who wore
a T-shirt that said “The clever programmer out-smarts himself again.”)

Both design and coding (and for that matter, analysis) are skills in their own right,
and there are numerous aspects that must be kept track of at each phase of
development. We’'re about at the end of the book, so we’d like to leave you with this
final thought: All humans are fallible, and one of the best ways to reduce error rates
is to focus on one thing at a time. “One thing at a time” is one of the central themes
that’s woven through the ICONIX Process. Even if you take nothing else from this

book, we think you’ll be more successful if you try to at least keep that simple fact in
mind.



Appendix Appendix

This Appendix contains a report that summarizes the Rational Rose model for our
Internet Bookstore. This report includes the following:

7

7

¥ 3 ¥ 3 3

the class diagram at the end of Chapter 2

the “good” text for all of the use cases represented in Chapter 3
the use case diagram at the end of Chapter 3

all of the “good” robustness diagrams from Chapter 5

the class diagram at the end of Chapter 5

all of the “good” sequence diagrams from Chapter 7

the class diagrams at the end of Chapter 7

Rational Rose Model Report

Rose Use Case Model

Use Case Documentation

USE CASE VIEW REPORT

Use Case View

Use Case Diagram - Main



O o

Edil Contents of Shopping Garf _f
O f Shipping Clerk ®

A \

Seurch by fasthar \ . Shipping Stalion

Browse List of Boaks J,--"mm;h'ﬂ @ ®
/ O -

P
i Y Track Fecent Onders A
\ Ship Order Shipper
Cancal Order f
Opan Account
Chick Out
s &
Ho——————= y———————="-
l"-—,\\ k\
Recsiving Clark Process Fiecaived Shipment vy et
/
||:"
I_.
—
Y
Facehing Station

Class Diagram - Domain Model

Iw‘ﬁﬁ'i [ES rf;] l__ e

.-'
N} R

)
“f'.""'; e i =

I,

e

Class Diagram - Domain Model with Attributes



Class Diagram - Static Model (Part One)



Class Diagram - Static Model (Part Two)



Class Diagram - Static Model (Part Three)



£

'Cl.___

i

C

H%

|

Actor - Customer

Actor - Shipping Clerk

Actor - Shipper

Actor - Receiving Clerk

_:

i s g

en Llas

Cliioi W]



Actor - Inventory Clerk
Actor - Shipping Station

Actor - Receiving Station

Use Case - Browse List of Books
Documentation:
Basic Course

The Customer clicks on a Category on the Browse Books Page. The system displays
the subcategories within that Category. This process continues until there are no
more subcategories, at which point the system displays the Books in the lowest
subcategory. The Customer clicks on the thumbnail for a Book. The system invokes
the Display Book Details use case.

Alternate Course

If the system does not find any Books contained within a given Category, it displays
a message to that effect and prompts the Customer to select a different Category.

List of Associations
Customer Communicates with Browse List of Books
Use Case - Cancel Order
Documentation:
Basic Course

The system ensures that the Order is cancellable (in other words, that its status isn’t
“shipping” or “shipped”). Then the system displays the relevant information for the
Order on the Cancel Order Page, including its contents and the shipping address. The
Customer presses the Confirm Cancel button. The system marks the Order status as
“deleted” and then invokes the Return Items to Inventory use case.

Alternate Course

If the status of the Order is “shipping” or “shipped,” the system displays a message
indicating that it’s too late for the Customer to cancel the order.

List of Associations
Search Results Page Communicates with Cancel Order
Use Case - Check Out
Documentation:
Basic Course

The system creates a Candidate Order object that contains the contents of the
Customer’s Shopping Cart. Then the system retrieves the Shipping Addresses



associated with the Customer’s Account and displays these addresses on the
Shipping Address Page.

The Customer selects an address and then presses the Use This Address button. The
system associates the given Shipping Address with the Candidate Order. Then the
system displays the available Shipping Methods on the Shipping Method Page.

The Customer selects a shipping method and then presses the Use This Shipping
Method button. The system associates the given Shipping Method with the Candidate
Order. Then the system displays the contents of the Billing Info objects associated
with the Customer’s Account, on the Billing Information Page.

The Customer selects a billing method and presses the Use This Billing Information
button. The system associates the given Billing Info object with the Candidate Order.
Then the system displays the Confirm Order Page.

The Customer presses the Confirm Order button. The system converts the Candidate
Order to an Order and destroys the Shopping Cart. Then the system returns control
to the use case from which this use case received control.

Alternate Courses
If the Customer has not already logged in, the system invokes the Log In use case.

If the system does not find any Shipping Addresses, it invokes the Create Shipping
Address use case.

If the system does not find any Billing Info objects, it invokes the Define Billing
Information use case.

If the Customer presses the Cancel Order button at any time, the system destroys
the Candidate Order and returns control to the use case from which this use case
received control.

List of Associations

Customer Communicates with Check Out

Shopping Cart Page Communicates with Check Out
Use Case - Edit Contents of Shopping Cart
Documentation:
Basic Course

On the Shopping Cart Page, the Customer modifies the quantity of an Item in the
Shopping Cart and then presses the Update button. The system stores the new
quantity and then computes and displays the new cost for that Item.

The Customer presses the Continue Shopping button. The system returns control to
the use case from which it received control.

Alternate Courses



If the Customer changes the quantity of the Item to O, the system deletes that Item
from the Shopping Cart.

If the Customer presses the Delete button instead of the Update button, the system
deletes that Item from the Shopping Cart.

If the Customer presses the Check Out button instead of the Continue Shopping
button, the system passes control to the Check Out use case.

List of Associations
Customer Communicates with Edit Contents of Shopping Cart

Class Diagram - Edit Contents of Shopping Cart Robustness

Check Out
modify quantily; .
press Update <
Shappinﬁ Cart Paga
Custamer i Delete Hem
Dizplay =
Updale Quantity | |
and Cost G
Shopping Cart
{freorm Drormain wilh Aflntoiss)
Delete ltam

{frorm Diomain with Altribulos )

Interaction Diagram - Edit Contents of Shopping Cart Sequence



-0

Basic Course 1; Customes :. Cart. M

On the Shepping Cart Pag onlipdatel ) |
i Ehe Shopping &, |
the Cusiomer modifies the goelitam |

quantity af &n Ibam in Lha *-I |
Shappirg Carl, and tean
pressed the Update bulbon.

updaleCuantityAndCost] )

N

The sysbam siones the new i
quaniity, and then compuies displayCost| |
ard displays the new cost for S

that ltem +_|
The Customer presses the anConlinuashopeingl ) -
Contirmue Shopping bution. o
Thix sysbam returns contral 1o

the use case from which it

recahved contnol

Alrmaie Courses
deleteem| )

quantity of the Bem 1o 4, the
systom dedeles that llem from
tha Shapping Cart. deledalbamy |

If the Customor presses the ""—I

Delale button inslead of the o Delete] | 3

Update bulton, the system 3
debates that Hem rom tha
Shappineg Carl pry—n

If the Customar presses ha | |
Chack Cul button instead of the entheckCull ) | Baes coninol | |
Cantirue Shopping buticn, the ~7 |80 Gheck Out

SWEIAM passas connol 1o the LIS Case

Chack Oul use case | | |

dualreyt )

|
|
|
|
|
If the Customar changes the |
I
|
|

deletaliem )

|
|
|
|
|
|
|
1
|
|
J

Use Case - Log In
Documentation:
Basic Course

The Customer clicks the Log In button on the Home Page. The system displays the
Login Page. The Customer enters his or her user ID and password and then clicks the
Log In button.

The system validates the login information against the persistent Account data and
then returns the Customer to the Home Page.

Alternate Courses

If the Customer clicks the New Account button on the Login Page, the system
invokes the Open Account use case.

If the Customer clicks the Reminder Word button on the Login Page, the system
displays the reminder word stored for that Customer, in a separate dialog box. When
the Customer clicks the OK button, the system returns the Customer to the Login
Page.

If the Customer enters a user ID that the system does not recognize, the system
displays a message to that effect and prompts the Customer to either enter a
different ID or click the New Account button.



If the Customer enters an incorrect password, the system displays a message to that
effect and prompts the Customer to reenter his or her password.

If the Customer enters an incorrect password three times, the system displays a
page telling the Customer that he or she should contact customer service and also
freezes the Login Page.

List of Associations
Customer Communicates with Log In

Class Diagram - Log In Robustness

Open Aceount

anter data-and chick Login Lagin Page
dlick OK
Cuslomer Validata
Reminder Word Diakog Box J =
< Azeount
{fromn Do with: Adtritules)
click Log in " Display

Home Page

Interaction Diagram - Log In Sequence



2 Home Page 3 ; Losges P 4 - Bpreies W Didkeg B Acrenni

1 Cumlomess
Bownic: Doures onlogiad § B
T Dastormad chka. sha Logl in bulbon
a1 B Hare Pags. raerLy
The systam Suplays e Logn Page i

Tt Cuttrrras ariers s or B Lok 10 """":“_'_
] Do, nel e chois
S Login buion

ilaabaLagrinksl |
Tha wysism walciatng. th login o
pkarrratien agarel P pislen gl |
Roouni dats, and s et
e o b el Hore Pags

AERITaE T
oA |
T i Cunesse Dok g h M ADCousT <

Bution on the Lagin Pags, e syseem ! w“wj

Ewsnl T Oes ADSu vl Cige.
anflsrendaWord |

T it Cursinenad kg th Serended
i bution. on P Logn Pages. e
Sy i) SEEkn S e S Terded word
pseesd for thad Cusinmes i papaie e
dhaien) b Whein B Curidoeses clichs i ] | i
e O bruian, e BYS0T, Petiams. the Jr—
o minrmar i= the Logn Page

1 P Coridetsnd irkeri i i 10 Bl Do

EEAETI G088 T SBCGNEE, T By Snphwyl roArdPrompd |

iy & mensge o el efec] sl

PAETLE [N CLAMCSS |2 e B B

e 1] or Chok Dot M Acrount

B,

T ot G GNierS i e sapir, i

panpenrd Ha ypuiem daplye 2 | ealenibroniel )

rusisagm 1o il e¥ec and P
prompts e Cusomer i

resarfier *w or her pasvword.

1 e Cundomae priery an ncorrect

pasvennd s b e Fpien

duzar @ s g b

ot Bl he o ahe Should

contac] Cusdomes Sarvics, and sl

a2 D Logeh P

Use Case - Open Account
Documentation:
Basic Course

The Customer types his or her name, an e-mail address, and a password (twice),
and then presses the Create Account button. The system ensures that the Customer
has provided valid data and then adds an Account to the Master Account Table using
that data. Then the system returns the Customer to the Home Page.

Alternate Courses

If the Customer did not provide a name, the system displays an error message to
that effect and prompts the Customer to type a name.

If the Customer provided an email address that’s not in the correct form, the system
displays an error message to that effect and prompts the Customer to type a
different address.

If the Customer provided a password that is too short, the system displays an error
message to that effect and prompts the Customer to type a longer password.

If the Customer did not type the same password twice, the system displays an error
message to that effect and prompts the Customer to type the password correctly the
second time.



If the account is already in the Master Account Table, the system tells the Customer.
List of Associations

Customer Communicates with Open Account

Login Page Communicates with Open Account

Open Account Communicates with Login Page

Use Case - Process Received Shipment
Documentation:
Basic Course

The Receiving Clerk ensures that the Line Items listed on the Purchase Order match
the physical items. The Clerk waves the bar code on the packing slip under the
sensor at the receiving station.

The system changes the status of the Purchase Order to “fulfilled” and updates the
quantity on hand values for the various Books. The Clerk hands the Books off to the
Inventory Clerk.

Alternate Course

If the Receiving Clerk finds a mismatch between the Purchase Order and the physical
items, the Clerk stops processing of the shipment until he or she is able to make a
match.

List of Associations
Receiving Clerk Communicates with Process Received Shipment
Process Received Shipment Communicates with Inventory Clerk
Process Received Shipment Communicates with Receiving Station

Use Case - Search by Author

Documentation:

Basic Course

The Customer types the name of an Author on the Search Page and presses the
Search button. The system ensures that the Customer typed a search phrase and
then searches the Catalog and retrieves all of the Books with which that Author is
associated.

The system retrieves the important details about each Book and creates a Search
Results object with that information. Then the system displays the list of Books on
the Search Results Page, with the Books listed in reverse chronological order by
publication date. Each entry has a thumbnail of the Book’s cover, the Book’s title and
authors, the average Rating, and an Add to Shopping Cart button.



The Customer presses the Add to Shopping Cart button for a particular Book. The
system passes control to the Add Item to Shopping Cart use case.

Alternate Courses

If the Customer did not type a search phrase before pressing the Search button, the
system displays an error message to that effect and prompts the Customer to type a
search phrase.

If the system was unable to find any Books associated with the Author that the
Customer specified, the system displays a message to that effect and prompts the
Customer to perform a different search.

If the Customer leaves the page in a way other than by pressing an Add to Shopping
Cart button, the system returns control to the use case from which this use case
received control.

List of Associations
Customer Communicates with Search by Author

Class Diagram - Search by Author Robustness

lype author name;

prass Search
- Saarch e
Customer Fiaglﬁ I . A Calzlog
{fresrts Darmain wath Aliriboles)
no phrase .
< = Varify Search
- Phrass
! g
Ensplay Ao books S
Y i Book
.< (i Dampin wills Albiknibas)
Saarch Resulis Page f
Search om Author
)
¥ Saarch Resulls
{Irorm Elowmain witt Aliribuies) Retrieve Delails
Creals

ltem to Shopping Cart

Interaction Diagram - Search by Author Sequence



Bawc Lo
et |

TP Lo g e ' ol

rusrsa ol e dushee on e

SEWCN P, B

prouson. Ehe Saarch bution.

T iy irmearinh Tl

o Comtomr fypad B ath
PR el Falen Jaa T
B Catalog snd refreves o of
g Bk itk ehach: T

A b oo

Thos wysben'® TEW nirvies Iy
aryerar] dolsh abas
sk Rlocik, el creabes 8
SBHCT Rl 0BT el
B i rutor

Treiri eyl Dy e
I of Mooy on e Semrth
Pt Fge, wifh

B Bochs kaded in i

himTues Do

H o o gl mom Sppa B
SEaCH wrie Didov PRI
B Saarch Bution, B wyaiem
e BT PRSI 1)
Tt et B pITengl ey
CABORE P T
phrasa

dapln B hnedPeomad |

T ey wirk it b
vy By paccaes wib e
e Bl W Cariorved

dnplayErooreirormsy )

i Cuniome: avves e page
in gy ol fron By presng
L e ]
bation, s Eyaben redaTa
om0 T e Caae o
whch thay L o ecErend
coniml

Use Case - Ship Order
Documentation:

Basic Course

The Shipping Clerk ensures that the Items listed on the packing slip for the Order
match the physical items. The Clerk waves the bar code on the packing slip under

the sensor at the shipping station.

The system changes the status of the Order to “shipping.” Then the system retrieves
the Shipping Method that the Customer specified for this Order and displays it on the

Shipping Station Console.

The Clerk weighs the set of physical items. The Clerk packages the Items. The Clerk
attaches a manifest appropriate for the given shipping method. The Clerk waves the
bar code on the manifest under the sensor. The Clerk sends the package out via the

associated Shipper.

Alternate Course

aarhOnAutar |

B |

| W I Sopping
|Canumn mae |

e |

e



If the Shipping Clerk finds a mismatch between the Order and the physical items, the
Clerk stops processing of the Order until he or she is able to make a match.

List of Associations
Shipping Clerk Communicates with Ship Order
Ship Order Communicates with Shipper
Ship Order Communicates with Shipping Station

Class Diagram - Ship Order Robustness

Shipping Clark Shipper Intarface Shipper

i

wave bar cods (

Changa Slalus

Shipping Station Sensor

Shipping Siation Console
; GHEF
{ "< o (B D with A inited)

Dispiay Shipplng Retrieva Shipping
Mathod Method

Interaction Diagram - Ship Order Sequence



0 010 "

1 ; Shippeng Siphon Seraor & ¢ Shipping Stwon Cormols & ; Shipper inipripos I ; O

Tlasr: Courns 1. Shippéng Clesy i Epps

The Shipping Clert sosees
Tl P orsd bidid 0 DM
packing shig for the Oeder
—vatch P physaid dears

Thett Clerh warwst B bar £odien
on i paciing sip under tha
e ] [ Wy Wl
chargeSimns |
Tha soyndet chvrsges s ]
wiatue of B Order bo “shipping”™ |
retrren S garaiditiael |
Theen th syFiem v T
Shuppang kisthod that e

Camiomer apecibed tor P Oroer, |
il ehigdinyd i on i Shipping
S Consoly

dhaplayShigpngiiatod] )

The Clark wessphes e ot of
phyiical . Tha Ciork

pach ages e s, The

Clark: aftaches a raniios! .
approgeale for et given shpping |
mathod

il kg |

Tha Clark oy e pischags ot |
I T G|

v o apeciaied Shippe.
Ascnale Cogrye

¥ tha Shigging et fndds &
EwiTuitch idwinit e Orckdt sl
the physical derm, e Clart
FU0S proceaing of e O

wntl he or she by, sl o ok B
Ach

Use Case - Track Recent Orders
Documentation:
Basic Course

The system retrieves the Orders that the Customer has placed within the last 30
days and displays these Orders on the Order Tracking Page. Each entry has the
Order ID (in the form of a link), the Order date, the Order status, the Order
recipient, and the Shipping Method by which the Order was shipped.

The Customer clicks on a link.The system retrieves the relevant contents of the
Order and then displays this information, in view-only mode, on the Order Details
Page. The Customer presses OK to return to the Order Tracking Page.

Once the Customer has finished viewing Orders, he or she clicks the Account
Maintenance link on the Order Tracking Page. The system returns control to the
invoking use case.

Alternate Course

If the Customer has not placed any Orders within the last 30 days, the system
displays a message to that effect on the Order Tracking Page.

List of Associations
Customer Communicates with Track Recent Orders

Class Diagram - Track Recent Orders Robustness



Cuslamer

Order Details Page

Order Tracking Page

v

Ordar
it Chtvain with Alleibales)

\ | §

Ordar
| {leem Damaln with Aliribiles)
A

b } .
GI' F‘<~ 1

Display

v

Relriave Recent
Orders

Interaction Diagram - Track Recent Orders Sequence

Qs Tracking Fage §ach sairy
a1 vt 0 (i o e o i o,
£ DS cady, Fus Dechr w2
R reCiaser 3o
By Wefad by whch e
ChTi &us e

Thes Do cicka ona bnk. Tha

TOTALS:
2 Packages

10 Use Cases

X

jH-

b

£
[

I
-
I

I

I

I

|

:

I

[ I
I

I

!

|

I

I

I

I

I

I

USE CASE PACKAGE STRUCTURE

Use Case View



Bibliography

Grady Booch: Object-Oriented Analysis and Design with Applications, Second Edition.
Addison-Wesley 1994.

Grady Booch, James Rumbaugh, lvar Jacobson: The Unified Modeling Language User
Guide. Addison Wesley Longman 1999.

Peter DeGrace Leslie Hulet Stahl: The Olduvai Imperative. Prentice Hall 1993.
Tom DeMarco: Structured Analysis and System Specification. Prentice Hall 1985.
Kurt Derr: Applying OMT. SIGS Books 1995.

Bruce Powel Douglass: Real-Time UML: Developing Efficient Objects for Embedded
Systems. Addison Wesley Longman 1998.

Martin Fowler: Refactoring. Addison-Wesley 2000.

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides [Gang of Four]: Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley 1995.

Maurice Howard Halstead: Elements of Software Science. 1977. Out of print.

Ivar Jacobson, Magnus Christerson, Patrick Jonsson, Gunnar Overgaard: Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley 1992.

Ivar Jacobson, Maria Ericsson, Agneta Jacobson: The Object Advantage: Business
Process Reengineering with Object Technology. Addison-Wesley 1995.

Ron Jeffries, Ann Anderson, Chet Hendrickson: Extreme Programming Installed.
Addison-Wesley 2001.

Chris Kemerer: Software Project Management: Readings and Cases. Richard D. Irwin
1996.

Robert Cecil Martin: Designing Object-Oriented C++ Applications Using the Booch
Method. Prentice Hall 1995.

Doug Rosenberg: “Applying O-O Methods to Interactive Multimedia Projects,”
OBJECT, June 1995.

Doug Rosenberg: Inside the ICONIX Process (CD-ROM; ICONIX, 2001).

Doug Rosenberg: Mastering UML with Rational Rose (CD-ROM; ICONIX, 1997).
Doug Rosenberg: “Modeling Client/Server Systems,” OBJECT, March 1994.
Doug Rosenberg: An Object Methodology Overview CD-ROM; ICONIX, 1994).
Doug Rosenberg: Rational Rose 98 for Power Users (CD-ROM; ICONIX, 1998).

Doug Rosenberg: “UML Applied: Nine Tips to Incorporating UML Into Your Project,”
Software Development, March 1998.



Doug Rosenberg: A Unified Object Modeling Approach (2 CD-ROM set; ICONIX,
1996).

Doug Rosenberg: “Using the Object Modeling Technique with Objectory for
Client/Server Development,” OBJECT, November 1993.

Doug Rosenberg: “Validating the Design of Client/Server Systems,” OBJECT, July
1994.

Doug Rosenberg, Kendall Scott “Optimizing Rose 98 to Support Use Case Driven
Object Modeling.” Available at
http://www.rosearchitect.com/archives/9810/online.shtml.

Doug Rosenberg Kendall Scott: Use Case Driven Object Modeling with UML: A
Practical Approach. Addison Wesley Longman 1999.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William
Lorenzen: Object-Oriented Modeling and Design. Prentice Hall 1991.

William Shakespeare: Much Ado About Nothing. Public domain.

Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener: Designing Object-Oriented
Software. Prentice Hall 1990.



